
基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示
陈昌锦, 程晓敢, 林秀斌, 李丰, 田禾丰, 屈梦雪, 孙思瑶
基于弹性板模型的塔里木盆地北部新生代沉降模拟:对南天山隆升的启示
Modeling of the Cenozoic subsidence of northern Tarim Basin using elastic plate numerical model: Implications for uplift of South Tian Shan
在印度-欧亚板块碰撞远程效应影响下,天山造山带在新生代活化隆升,与其南缘相邻的塔里木盆地北部发生挠曲沉降并沉积了巨厚的新生代地层,该巨厚新生代地层和造山沉积地层为本文进一步探究南天山隆升过程提供了关键的沉积记录。本文采用有限弹性板数值模拟的方法,对盆地新生代不同时期基底沉降剖面分别进行建模研究。结果表明:盆地沉降受沉积负载和构造负载共同控制,66~>5.3 Ma期间沉积负载对盆地沉降的贡献量小于或等于构造负载的贡献量;约5.3 Ma至今沉积负载对盆地沉降的贡献量远大于构造负载。南天山构造负载变化速率表现为66~>26.3 Ma缓慢增长;26.3~>5.3 Ma南天山稳定增长;约5.3 Ma至今南天山造山带构造负载高度快速增长。基于对盆地沉降过程的分析,限制南天山新生代初始隆升时间为古近纪,其相对海拔高度从400 m增长到2 500 m;虽然在约5.3 Ma至今南天山相对海拔高度保持稳定,但构造负载高度仍在增加,这可能是盆地俯冲作用的加剧在一定程度上抑制了造山带平均海拔高度的增长,进而导致南天山的侵蚀和隆升达到相对平衡。
The Tian Shan orogenic belt experienced activation and uplift during the Cenozoic era, attributed to the remote effects of the India-Asia collision. Adjacent to the southern margin of the Tian Shan orogenic belt, the northern Tarim Basin underwent bending subsidence and accumulated extensive Cenozoic strata, providing a robust foundation for investigating the uplifting process of the southern Tian Shan Mountains. In this study, we employ finite elastic plate numerical simulation to model basement subsidence profiles across various Cenozoic periods. Our findings underscore the control of basin subsidence by sedimentary load and tectonic load, with sedimentary load exerting a significantly greater influence on basin subsidence than tectonic load from ~5.3 Ma to the present. The rate of load change in the southern Tian Shan structure exhibits gradual increase from ~66 Ma to ~26.3 Ma, followed by a rapid ascent since ~5.3 Ma. Our analysis indicates that the initial uplift phase of the Cenozoic in the southern Tian Shan was confined to the Paleogene, with its relative elevation escalating from 400 meters to 2500 meters. Although the relative elevation of the southern Tian Shan has remained stable since ~5.3 Ma, the height of tectonic load continues to rise. This phenomenon is attributed to the intensified basin subduction, which has constrained the average elevation of the orogenic belt, thereby establishing a relative equilibrium between erosion and uplift processes in the southern Tian Shan.
南天山 / 塔里木盆地北部 / 有限弹性板模拟 / 沉降过程 / 初始隆升
southern Tian Shan / northern Tarim Basin / finite elastic plate simulation / settlement process / initial uplift
P542;P534.6
[1] |
|
[2] |
|
[3] |
郭晓玉, 罗旭聪, 高锐, 等. 印度-欧亚板块主碰撞带全地壳尺度相互作用关系研究[J]. 地学前缘, 2023, 30(2): 1-17.
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
常健, 邱楠生, 李佳蔚. 塔里木盆地与南天山的耦合关系: 来自(U-Th)/He年龄的新证据[J]. 地学前缘, 2012, 19(5): 234-243.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
汤良杰, 邱海峻, 云露, 等. 塔里木盆地北缘—南天山造山带盆-山耦合和构造转换[J]. 地学前缘, 2012, 19(5): 195-204.
|
[20] |
|
[21] |
|
[22] |
张希明. 塔里木盆地中新生代沉积演化特征[J]. 新疆地质, 2001, 19(4): 246-250.
|
[23] |
金之钧, 张一伟, 陈书平. 塔里木盆地构造-沉积波动过程[J]. 中国科学D辑: 地球科学, 2005, 35(6): 530-539.
|
[24] |
|
[25] |
李曰俊, 杨海军, 张光亚, 等. 重新划分塔里木盆地塔北隆起的次级构造单元[J]. 岩石学报, 2012, 28(8): 2466-2478.
|
[26] |
何登发, 贾承造, 李德生, 等. 塔里木多旋回叠合盆地的形成与演化[J]. 石油与天然气地质, 2005, 26(1): 64-77.
|
[27] |
|
[28] |
李曰俊, 杨海军, 赵岩, 等. 南天山区域大地构造与演化[J]. 大地构造与成矿学, 2009, 33(1): 94-104.
|
[29] |
李世琴, 唐鹏程, 饶刚. 南天山库车褶皱-冲断带喀拉玉尔滚构造带新生代变形特征及其控制因素[J]. 地球科学: 中国地质大学学报, 2013, 38(4): 859-869.
|
[30] |
|
[31] |
|
[32] |
孙继敏, 朱日祥. 天山北麓晚新生代沉积及其新构造与古环境指示意义[J]. 第四纪研究, 2006, 26(1): 14-19.
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
刘绍文, 王良书, 李成, 等. 塔里木盆地岩石圈热-流变学结构和新生代热体制[J]. 地质学报, 2006, 80(3): 344-350.
|
[43] |
|
[44] |
付永涛, 范守志, 施小斌. 关于岩石圈有效弹性厚度的地质理解[J]. 地质科学, 2005, 40(4): 585-593.
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
郭超, 张志勇, 吴林, 等. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据[J]. 地球科学, 2022, 47(9): 3417-3430.
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
/
〈 |
|
〉 |