基于生态安全的我国土壤镉环境基准研究

丁昌峰, 周志高, 王玉荣, 张桃林, 王兴祥

PDF(1573 KB)
PDF(1573 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (2) : 130-136. DOI: 10.13745/j.esf.sf.2023.9.13
农田土壤环境质量基准

基于生态安全的我国土壤镉环境基准研究

作者信息 +

Environmental criteria for cadmium in soils based on ecological safety considerations in China

Author information +
History +

摘要

土壤镉(Cd)污染的生态安全问题不容忽视,我国目前尚缺乏基于生态风险的土壤Cd环境基准。本研究通过调研国内外关于土壤Cd的生态毒性研究,收集并筛选基于我国土壤的Cd毒性效应数据,采用物种敏感性分布法并结合Cd的生态毒性预测模型,推导不同用地方式下的土壤全量和EDTA提取态Cd生态安全环境基准。共收集与筛选出包含13个物种或生态过程的126个土壤Cd生态毒性数据,其中陆生植物毒性数据60个(6个物种)、无脊椎动物毒性数据39个(3个物种)、生态过程毒性数据27个(4种指标)。土壤Cd生态毒性预测模型研究结果表明,土壤pH是影响Cd生态毒性的最重要因子。自然保护地和农业用地、公园用地、住宅用地、商服及工业用地不同土壤pH值范围的土壤全量Cd生态安全基准分别为1.91~5.25、3.94~11.1、7.59~22.0和10.5~30.8 mg·kg-1,基于EDTA提取态Cd的生态安全基准分别为 1.13~3.12、2.34~6.62、4.51~13.1和6.24~18.4 mg·kg-1。研究结果可为我国土壤污染风险管控标准的制修订提供依据。

Abstract

The ecological safety issue due to cadmium (Cd) contamination in soils cannot be ignored. Presently, China has no environmental criteria established for Cd in soil based on ecological safety considerations. In this study, we collect and screen relevant Cd toxicity data related to China from results of domestic and international studies on Cd ecotoxicity in soil. We use species sensitivity distribution, combined with prediction models for Cd ecotoxicity in soil to derive ecological safety criteria for the total Cd and EDTA-extractable Cd in soils under different land use types. We obtained a total of 126 Cd toxicity data on 13 species and ecological processes, involving 60 terrestrial plants (6 species), 39 invertebrates (3 species), and 27 ecological processes (4 indicators). The prediction models we developed suggested that soil pH was the most important factor affecting Cd ecotoxicity in soil. The ecological safety criteria for the total Cd/EDTA-extractable Cd in soils with different pH values were 1.91-5.25/1.13-3.12 mg·kg-1 for protected natural areas and agricultural land; 3.94-11.1/2.34-6.62 mg·kg-1 for park land; 7.59-22.0/4.51-13.1 mg·kg-1 for residential land; and 10.5-30.8/6.24-18.4 mg·kg-1 for commercial services and industrial land. The results provide a basis for the establishment and revision of soil pollution control standards in China.

关键词

土壤 / / 生态毒性 / 物种敏感性分布 / 环境基准

Key words

soil / cadmium / ecological toxicity / species sensitivity distribution / environmental criteria

中图分类号

X53;X825

引用本文

导出引用
丁昌峰 , 周志高 , 王玉荣 , . 基于生态安全的我国土壤镉环境基准研究. 地学前缘. 2024, 31(2): 130-136 https://doi.org/10.13745/j.esf.sf.2023.9.13
Changfeng DING, Zhigao ZHOU, Yurong WANG, et al. Environmental criteria for cadmium in soils based on ecological safety considerations in China[J]. Earth Science Frontiers. 2024, 31(2): 130-136 https://doi.org/10.13745/j.esf.sf.2023.9.13

参考文献

[1]
ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China:current status and mitigation strategies[J]. Environmental Science and Technology, 2015, 49(2): 750-759.
[2]
姜瑢, 李勖之, 王美娥, 等. 土壤污染生态毒性效应评价研究进展[J]. 生态学报, 2023, 43(21): 9061-9070.
[3]
赵晓丽, 赵天慧, 李会仙, 等. 中国环境基准研究重点方向探讨[J]. 生态毒理学报, 2015, 10(1): 18-30.
[4]
POSTHUMA L, TRAAS T P, SUTER G W. General introduction to species sensitivity distributions[M]// POSTHUMAL, TRAAST P, SUTERG W. Species sensitivity distributions in ecotoxicology. Boca Raton: CRC Press, 2002: 3-9.
[5]
VAN STRAALENN M. Theory of ecological risk assessment based on species sensitivity distributions[M]// POSTHUMAL, TRAAST P, SUTERG W. Species sensitivity distributions in ecotoxicology. Boca Raton: CRC Press, 2002: 37-48.
[6]
SMOLDERS E, OORTS K, VAN SPRANG P, et al. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards[J]. Environmental Toxicology and Chemistry, 2009, 28(8): 1633-1642.
[7]
QIN L Y, SUN X Y, YU L, et al. Ecological risk threshold for Pb in Chinese soils[J]. Journal of Hazardous Materials, 2023, 444: 130418.
[8]
ZHAO S W, QIN L Y, WANG L F, et al. Ecological risk thresholds for Zn in Chinese soils[J]. Science of the Total Environment, 2022, 833: 155182.
[9]
KWAK J I, MOON J, KIM D, et al. Species sensitivity distributions for nonylphenol to estimate soil hazardous concentration[J]. Environmental Science and Technology, 2017, 51(23): 13957-13966.
[10]
KWAK J I, MOON J, KIM D, et al. Determination of the soil hazardous concentrations of bisphenol A using the species sensitivity approach[J]. Journal of Hazardous Materials, 2018, 344: 390-397.
[11]
WHEELER J R, GRIST E P M, LEUNG K M Y, et al. Species sensitivity distributions: data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1): 192-202.
[12]
LI L J, JIANG B, LI K, et al. Accurate derivation and modelling of criteria of soil extractable and total cadmium for safe wheat production[J]. Ecotoxicology and Environmental Safety, 2023, 261: 115092.
[13]
宋文恩, 陈世宝. 基于水稻根伸长的不同土壤中镉(Cd)毒性阈值(ECx)及预测模型[J]. 中国农业科学, 2014, 47(17): 3434-3443.
[14]
郑丽萍, 杜俊洋, 张亚, 等. 18种土壤中镉对白菜种子的毒害效应及预测模型研究[C]// 2017中国环境科学学会科学与技术年会论文集, 厦门. 北京: 中国环境科学学会, 2017: 1867-1876.
[15]
贺萌萌, 徐猛, 杜艳丽, 等. 镉在北京褐潮土中对玉米幼苗及其根际微生物的毒性效应[J]. 生态毒理学报, 2013, 8(3): 404-412.
[16]
张强. 贵州省主要土壤外源Pb和Cd对大麦和蚯蚓毒性初步研究[D]. 贵阳: 贵州师范大学, 2016.
[17]
王子萱, 陈宏坪, 李明, 等. 不同土壤中镉对大麦和多年生黑麦草毒性阈值的研究[J]. 土壤, 2019, 51(6): 1151-1159.
[18]
ZHANG X Q, WU H X, MA Y B, et al. Intrinsic soil property effects on Cd phytotoxicity to Ligustrum japonicum ‘Howardii’ expressed as different fractions of Cd in forest soils[J]. Ecotoxicology and Environmental Safety, 2020, 206: 110949.
[19]
刘海龙. 基于蚯蚓生物毒性的土壤Cd生态阈值研究[D]. 苏州: 苏州科技大学, 2015.
[20]
宣亮. 基于跳虫毒性实验的镉(Cd)生态阈值研究[D]. 合肥: 安徽大学, 2016.
[21]
王鑫, 党秀丽, 赵龙, 等. 镉对土壤秀丽隐杆线虫的毒性效应[J]. 农业环境科学学报, 2023, 42(4): 778-786.
[22]
程金金, 宋静, 陈文超, 等. 镉污染对红壤和潮土微生物的生态毒理效应[J]. 生态毒理学报, 2013, 8(4): 577-586.
[23]
TAN X P, WANG Z Q, LU G N, et al. Kinetics of soil dehydrogenase in response to exogenous Cd toxicity[J]. Journal of Hazardous Materials, 2017, 329: 299-309.
[24]
王月, 王学东, 杨昱祺, 等. 镉对北京城郊土壤潜在硝化速率的影响[J]. 生态毒理学报, 2014, 9(2): 367-374.
[25]
余淑娟, 高树芳, 屈应明, 等. 不同土壤条件下镉对番茄根系的毒害效应及其毒害临界值研究[J]. 农业环境科学学报, 2014, 33(4): 640-646.
[26]
ZHANG X Q, ZHU Y J, LI Z Z, et al. Assessment soil cadmium and copper toxicity on barley growth and the influencing soil properties in subtropical agricultural soils[J]. Environmental Research, 2023, 217: 114968.
[27]
WAN Y N, JIANG B, WEI D P, Ecological criteria for zinc in Chinese soil as affected by soil properties[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110418.
[28]
GARCÍA-GÓMEZ C, ESTEBAN E, SÁNCHEZ-PARDO B, et al. Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms: relevance of soil (total and available) and body concentrations[J]. Ecotoxicology, 2014, 23(7): 1195-1209.
[29]
United States Environmental Protection Agency (US EPA). Guidance for developing ecological soil screening levels[R]. Washington DC: US Environmental Protection Agency, 2005.
[30]
VERBRUGGEN E M J, POSTHUMUS R, VAN WEZEL A. Ecotoxicological serious risk concentrations for soil, sediment and (ground) water: updated proposals for first series of compounds[R]. Amsterdam: National Institute of Public Health and the Environment (RIVM), 2001.
[31]
United Kingdom Environment Agency (EA). Soil screening values for use in UK ecological risk assessment[R]. Warrington: United Kingdom Environment Agency, 2004.
[32]
Canadian Council of Ministers of the Environment (CCME). A protocol for the derivation of environmental and human health soil quality guidelines[R]. Winnipeg: CCME, 2006.
[33]
CARLON C. Derivation methods of soil screening values in Europe: a review and evaluation of national procedures towards harmonization[M]. Luxembourg: Office for Official Publications of the European Communities, 2007.
[34]
JENNINGS A A. Analysis of worldwide regulatory guidance values for the most commonly regulated elemental surface soil contamination[J]. Journal of Environmental Management, 2013, 118: 72-95.
[35]
宋静, 许根焰, 骆永明, 等. 对农用地土壤环境质量类别划分的思考:以贵州马铃薯产区Cd风险管控为例[J]. 地学前缘, 2019, 26(6): 192-198.
[36]
KUMPIENE J, GIAGNONI L, MARSCHNER B, et al. Assessment of methods for determining bioavailability of trace elements in soils: a review[J]. Pedosphere, 2017, 27(3): 389-406.
[37]
JIANG B, MA Y B, ZHU G Y, et al. Prediction of soil copper phytotoxicity to barley root elongation by an EDTA extraction method[J]. Journal of Hazardous Materials, 2020, 389: 121869.

脚注

基金

国家重点研发计划项目(2021YFC1809102)

评论

PDF(1573 KB)

Accesses

Citation

Detail

段落导航
相关文章

/