湖南耕地土壤和稻米重金属污染防控实践与思考

雷鸣, 周一敏, 黄大睿, 黄雅媛, 王薪琪, 李冰玉, 杜辉辉, 刘孝利, 铁柏清

PDF(1593 KB)
PDF(1593 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (2) : 173-182. DOI: 10.13745/j.esf.sf.2023.8.24
污染土壤修复

湖南耕地土壤和稻米重金属污染防控实践与思考

作者信息 +

Prevention and control of heavy metal contamination in cropland and in commercial rice in Hunan Province: Current status and practical considerations

Author information +
History +

摘要

湖南省是我国主要产粮区之一。由于矿产经济活动及其他人类活动,大面积耕地土壤受到重金属污染,从而一些地方的稻米重金属含量超过国家食品卫生标准。本研究对湖南省耕地土壤与稻米重金属污染现状和成因进行剖析。结果表明:湖南耕地土壤重金属污染特征是复合污染为主,污染程度逐年上升,主要分布在湘江流域和工矿区,并逐渐蔓延至养殖区,稻米重金属污染主要以Cd为主,其次是As和Pb。针对湖南稻米重金属污染的各种防控措施,阐述其工作原理、应用实例和优缺点,然后对湖南省开展的土壤重金属污染修复措施和研究进行总结与思考,提出应当构建一种基于土壤组成的原味钝化材料耦合易操作农艺措施的经济、绿色、高效的综合性技术方案,以期来修复耕地土壤重金属污染和降低稻米重金属含量,保障粮食安全生产。

Abstract

Hunan Province is one of the main grain-producing areas in China. Due to mining economic and other human activities, large areas of cultivated land soil are contaminated by heavy metals, which caused the concentrations of heavy metals in rice from some places exceed national food hygiene standard values. In this study, the current pollution status and reasons of heavy metal contaminated cultivated land soil and rice in Hunan Province are analyzed. The results showed that the characteristic of heavy metal contaminated farmland soil in Hunan is multiple-heavy metal pollution, and the level of pollution increases year by year, which is mainly distributed around the Xiangjiang River Basin and industrial and mining areas, and the contaminated area gradually spreads to breeding areas. The prominent heavy metal in rice is cadmium (Cd), followed by arsenic (As) and lead (Pb). In view of the various prevention and control measures for heavy metal pollution in rice from Hunan, their working principles, application examples, advantages and disadvantages were introduced. Then the remediation measures on heavy metal contaminated soil and their researches carried out in Hunan Province were summarized and discussed. Finally, in order to remediate heavy metal contaminated soil, reduce heavy metal contents in rice, and ensure safe food production, the economical, green, and efficient comprehensive technical method including in-situ passivator materials which based on soil composition coupled with easy-to-operate agronomic measures would be recommended.

关键词

耕地土壤 / 稻米 / 重金属 / 修复技术 / 钝化剂 / 湖南

Key words

cultivated land / rice / heavy metals / remediation / passivators / Hunan

中图分类号

X53;X825;X753

引用本文

导出引用
雷鸣 , 周一敏 , 黄大睿 , . 湖南耕地土壤和稻米重金属污染防控实践与思考. 地学前缘. 2024, 31(2): 173-182 https://doi.org/10.13745/j.esf.sf.2023.8.24
Ming LEI, Yimin ZHOU, Darui HUANG, et al. Prevention and control of heavy metal contamination in cropland and in commercial rice in Hunan Province: Current status and practical considerations[J]. Earth Science Frontiers. 2024, 31(2): 173-182 https://doi.org/10.13745/j.esf.sf.2023.8.24

参考文献

[1]
湖南省统计局,国家统计局湖南调查总队. 湖南省统计年鉴2023[EB/OL]. (2023-05-30)[2023-06-15]. http://222.240.193.190/2023tjnj/indexch.htm.
[2]
ZHU Y G, YOSHINAGA M, ZHAO F J, et al. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 443-467.
[3]
黄道友, 朱奇宏, 朱捍华, 等. 重金属污染耕地农业安全利用研究进展与展望[J]. 农业现代化研究, 2018, 39(6): 1030-1043.
[4]
陈世宝, 王萌, 李杉杉, 等. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 2019, 26(6): 35-41.
[5]
WANG P, CHEN H P, KOPITTKE P M, et al. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048.
[6]
ZHAO F J, MA Y B, ZHU Y G, et al. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science and Technology, 2015, 49(2): 750-759.
[7]
ZOU M M, ZHOU S L, ZHOU Y J, et al. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: a review[J]. Environmental Pollution, 2021, 280: 116965.
[8]
雷鸣, 秦普丰, 铁柏清. 湖南湘江流域重金属污染的现状与分析[J]. 农业环境与发展, 2010, 27(2): 62-65.
[9]
雷鸣, 曾敏, 郑袁明, 等. 湖南采矿区和冶炼区水稻土重金属污染及其潜在风险评价[J]. 环境科学学报, 2008, 28(6): 1212-1220.
[10]
LI B Y, WEI D N, LI Z Q, et al. Mechanistic insights into the enhanced removal of roxsarsone and its metabolites by a sludge-based, biochar supported zerovalent iron nanocomposite: adsorption and redox transformation[J]. Journal of Hazardous Materials, 2020, 389: 122091.
[11]
穆虹宇, 庄重, 李彦明, 等. 我国畜禽粪便重金属含量特征及土壤累积风险分析[J]. 环境科学, 2020, 41(2): 986-996.
[12]
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990: 5-87.
[13]
CHEN B, STEIN A F, CASTELL N, et al. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter[J]. Science of the Total Environment, 2016, 539: 17-25.
[14]
GELLY R, FEKIACOVA Z, GUIHOU A, et al. Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago[J]. Science of the Total Environment, 2019, 665: 502-512.
[15]
QIU K Y, XING W Q, SCHECKEL K G, et al. Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan, China[J]. Atmospheric Pollution Research, 2016, 7(1): 170-179.
[16]
刘耀驰, 高栗, 李志光, 等. 湘江重金属污染现状、污染原因分析与对策探讨[J]. 环境保护科学, 2010, 36(4): 26-29.
[17]
樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境学报, 2013, 22(10): 1727-1736.
[18]
师荣光, 郑向群, 龚琼, 等. 农产品产地土壤重金属外源污染来源解析及防控策略研究[J]. 环境监测管理与技术, 2017, 29(4): 9-13.
[19]
CHEN H P, YANG X P, WANG P, et al. Dietary cadmium intake from rice and vegetables and potential health risk: a case study in Xiangtan, southern China[J]. Science of the Total Environment, 2018, 639: 271-277.
[20]
ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106.
[21]
WILLIAMS P N, LEI M, SUN G X, et al. Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China[J]. Environmental Science and Technology, 2009, 43(3): 637-642.
[22]
TANG L, DENG S H, TAN D, et al. Heavy metal distribution, translocation, and human health risk assessment in the soil-rice system around Dongting Lake Area, China[J]. Environmental Science and Pollution Research, 2019, 26(17): 17655-17665.
[23]
龙九妹. 耐锑菌的筛选及其对水稻吸收与积累锑的影响研究[D]. 长沙: 湖南农业大学, 2019.
[24]
谭迪. 锑砷复合污染土壤的风险评价及萃取研究[D]. 长沙: 湖南农业大学, 2019.
[25]
杜辉辉, 刘新, 李杨, 等. 土壤中钨的环境行为与潜在风险: 研究进展与展望[J]. 土壤学报, 2022, 59(3): 655-666.
[26]
钟松雄, 尹光彩, 陈志良, 等. Eh、pH和铁对水稻土砷释放的影响机制[J]. 环境科学, 2017, 38(6): 2530-2537.
[27]
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
[28]
WANG J, WANG P M, GU Y, et al. Iron-manganese (oxyhydro)oxides, rather than oxidation of sulfides, determine mobilization of Cd during soil drainage in paddy soil systems[J]. Environmental Science and Technology, 2019, 53(5): 2500-2508.
[29]
DUAN G L, SHAO G S, TANG Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10(1): 9.
[30]
贺慧, 陈灿, 郑华斌, 等. 不同基因型水稻镉吸收差异及镉对水稻的影响研究进展[J]. 作物研究, 2014, 28(2): 211-215.
[31]
ALLOWAY B J. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability[M]. 3rd ed. Dordrecht: Springer, 2013.
[32]
周一敏, 黄雅媛, 刘凯, 等. 典型铁、锰矿物对稻田土壤砷形态与酶活性的影响[J]. 环境科学, 2022, 43(5): 2732-2740.
[33]
彭鸥, 铁柏清, 叶长城, 等. 稻米镉关键积累时期研究[J]. 农业资源与环境学报, 2017, 34(3): 272-279.
[34]
农业农村部办公厅. 轻中度污染耕地安全利用与治理修复推荐技术名录(2019年版本)[EB/OL]. (2019-03-25)[2023-05-10]. https://www.sinosite.com.cn/xinwenfenleisi/464.html.
[35]
XU D M, FU R B, LIU H Q, et al. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: a critical review[J]. Journal of Cleaner Production, 2021, 286: 124989.
[36]
CHEN H P, ZHANG W W, YANG X P, et al. Effective methods to reduce cadmium accumulation in rice grain[J]. Chemosphere, 2018, 207: 699-707.
[37]
HUANG Y, SHENG H, ZHOU P, et al. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming[J]. Ecotoxicology and Environmental Safety, 2020, 188: 109903.
[38]
黄道友, 陈惠萍, 龚高堂, 等. 湖南省主要类型水稻土镉污染改良利用研究[J]. 农业现代化研究, 2000, 21(6): 364-370.
[39]
LI N, FENG A X, LIU N, et al. Silicon application improved the yield and nutritional quality while reduced cadmium concentration in rice[J]. Environmental Science and Pollution Research, 2020, 27(16): 20370-20379.
[40]
周一敏, 黄雅媛, 刘晓月, 等. 叶面喷施纳米MnO2对水稻富集镉的影响机制[J]. 环境科学, 2021, 42(2): 932-940.
[41]
LI N J, ZHANG X H, WANG D Q, et al. Contribution characteristics of the in situ extracellular polymeric substances (EPS) in Phanerochaete chrysosporium to Pb immobilization[J]. Bioprocess and Biosystems Engineering, 2017, 40(10): 1447-1452.
[42]
TANG Y T, DENG T H B, WU Q H, et al. Designing cropping systems for metal-contaminated sites: a review[J]. Pedosphere, 2012, 22(4): 470-488.
[43]
ABDELHAFEZ A A, LI J H, ABBAS M H H. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil[J]. Chemosphere, 2014, 117: 66-71.
[44]
LI B Y, ZHOU S, WEI D N, et al. Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO2: pot experiment and field application[J]. Science of the Total Environment, 2019, 650: 546-556.
[45]
CAO Z Z, PAN J Y, YANG Y J, et al. Water management affects arsenic uptake and translocation by regulating arsenic bioavailability, transporter expression and thiol metabolism in rice (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111208.
[46]
LIN Z J, WANG X, WU X, et al. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system[J]. Environmental Pollution, 2018, 243: 1015-1025.
[47]
薛毅, 尹泽润, 盛浩, 等. 连续4 a施有机肥降低紫泥田镉活性与稻米镉含量[J]. 环境科学, 2020, 41(4): 1880-1887.
[48]
龙思斯, 宋正国, 雷鸣, 等. 不同外源镉对水稻生长和富集镉的影响研究[J]. 农业环境科学学报, 2016, 35(3): 419-424.
[49]
WANG X Q, DENG S H, ZHOU Y M, et al. Application of different foliar iron fertilizers for enhancing the growth and antioxidant capacity of rice and minimizing cadmium accumulation[J]. Environmental Science and Pollution Research, 2021, 28(7): 7828-7839.
[50]
QIAN X Y, FANG C L, HUANG M S, et al. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil[J]. Journal of Cleaner Production, 2017, 164: 198-208.
[51]
沈欣, 朱奇宏, 朱捍华, 等. 农艺调控措施对水稻镉积累的影响及其机理研究[J]. 农业环境科学学报, 2015, 34(8): 1449-1454.
[52]
SUN W M, XIAO E Z, XIAO T F, et al. Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions[J]. Environmental Science and Technology, 2017, 51(16): 9165-9175.
[53]
BJELKOVÁ M, GENČUROVÁ V, GRIGA M. Accumulation of cadmium by flax and linseed cultivars in field-simulated conditions: a potential for phytoremediation of Cd-contaminated soils[J]. Industrial Crops and Products, 2011, 33(3): 761-774.
[54]
MA X F, ZHENG C S, LI W, et al. Potential use of cotton for remediating heavy metal-polluted soils in Southern China[J]. Journal of Soils and Sediments, 2017, 17(12): 2866-2872.
[55]
环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 1689-1692.
[56]
BALDANTONI D, MORRA L, ZACCARDELLI M, et al. Cadmium accumulation in leaves of leafy vegetables[J]. Ecotoxicology and Environmental Safety, 2016, 123: 89-94.
[57]
JINADASA K B P N, MILHAM P J, HAWKINS C A, et al. Survey of cadmium levels in vegetables and soils of greater Sydney, Australia[J]. Journal of Environmental Quality, 1997, 26 (4): 924-933.
[58]
AWASTHI A K, ZENG X L, LI J H. Environmental pollution of electronic waste recycling in India: a critical review[J]. Environmental Pollution, 2016, 211: 259-270.
[59]
ZHOU Y M, LONG S S, LI B Y, et al. Enrichment of cadmium in rice (Oryza sativa L.) grown under different exogenous pollution sources[J]. Environmental Science and Pollution Research, 2020, 27(35): 44249-44256.
[60]
LI H, DAI M W, DAI S L, et al. Current status and environment impact of direct straw return in China’s cropland: a review[J]. Ecotoxicology and Environmental Safety, 2018, 159: 293-300.
[61]
ZHANG Q G, ZOU D S, ZENG X Y, et al. Effect of the direct use of biomass in agricultural soil on heavy metals: activation or immobilization?[J]. Environmental Pollution, 2021, 272: 115989.
[62]
WANG S, HUANG D Y, ZHU Q H, et al. Speciation and phytoavailability of cadmium in soil treated with cadmium-contaminated rice straw[J]. Environmental Science and Pollution Research, 2015, 22(4): 2679-2686.
[63]
熊静, 郭丽莉, 李书鹏, 等. 镉砷污染土壤钝化剂配方优化及效果研究[J]. 农业环境科学学报, 2019, 38(8): 1909-1918.
[64]
段海燕. 康达集团土壤生态修复的战略研究[D]. 成都: 电子科技大学, 2015.

脚注

基金

国家重点研发计划项目(2022YFD1700101)
湖南省自然科学基金项目(2022JJ30306)

评论

PDF(1593 KB)

Accesses

Citation

Detail

段落导航
相关文章

/