
机器学习:海底矿产资源智能勘探的新途径
刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧
机器学习:海底矿产资源智能勘探的新途径
Machine learning: A new approach to intelligent exploration of seafloor mineral resources
海底蕴藏着丰富的关键矿产资源,是当前研究的热点,也是未来产业新领域。随着海洋探测技术的不断进步,海底矿产勘探的数据量和数据维数急剧增加,给数据处理与解释带来了巨大困难和挑战。面对海量数据,传统的数据解释与分析方法暴露出许多问题。机器学习以其强大的自学能力,为无法解决或难以解决的问题提供了一系列智能分析决策方案,提高了数据分析的效率,是海底矿产资源智能勘探的新途径。近年来,机器学习在地球科学领域获得了广泛的关注和研究。为此,围绕机器学习技术应用于海底资源勘探技术,本文首先简要介绍了机器学习中经典的模型算法,然后详细阐述了机器学习在海底能源矿产和金属矿产两个方面的应用现状,最后总结了机器学习在海底矿产智能勘探领域的应用前景,指出了现有研究中存在的问题,提出了解决方案和未来的发展方向。
The seafloor is characterized by abundant key mineral resources, which is a hotspot of current research and a new field of industry in the future. With the continuous progress of ocean exploration technology, the volume and dimensions of data from seafloor mineral exploration have increased dramatically, which has brought great difficulties and challenges to data processing and interpretation. In the face of massive data, traditional data interpretation and analysis methods expose many problems. Machine learning, with its strong self-learning ability, provides a series of intelligent analysis and decision-making solutions for unsolvable or difficult problems, improving the efficiency of data analysis. It is a new way for the intelligent exploration of subsea mineral resources. In recent years, machine learning has obtained extensive attention and research in the field of geosciences. Therefore, focusing on the application of machine learning to seafloor resource exploration technology, this paper firstly briefly introduces the classical model algorithms in machine learning; then elaborates on the application status of machine learning in two aspects of seafloor energy resources and metal mineral, and finally summarizes the application prospects of machine learning in the field of intelligent exploration of seafloor minerals, points out the problems in existing research, and proposes solutions and future development directions.
机器学习 / 铁锰结核 / 富钴结壳 / 天然气水合物 / 海底矿产
machine learning / ferromanganese nodule / cobalt-rich crusts / natural gas hydrate / seafloor minerals
P744;TP181;TP183
[1] |
|
[2] |
|
[3] |
|
[4] |
石学法, 符亚洲, 李兵, 等. 我国深海矿产研究: 进展与发现(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(2): 305-318.
|
[5] |
周守为, 李清平, 朱海山, 等. 海洋能源勘探开发技术现状与展望[J]. 中国工程科学, 2016, 18(2): 19-31.
|
[6] |
|
[7] |
杨燕子, 陈华勇. 大洋富钴结壳研究进展及展望[J]. 大地构造与成矿学, 2023, 47(1): 1-19.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777.
|
[15] |
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
邓君兰, 董澧辉, 宋伟, 等. 基于Sea-thru和Mask R-CNN的深海多金属结核图像处理[J]. 矿冶工程, 2022, 42(2): 9-13.
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
/
〈 |
|
〉 |