机器学习:海底矿产资源智能勘探的新途径

刘洋, 李三忠, 钟世华, 郭广慧, 刘嘉情, 牛警徽, 薛梓萌, 周建平, 董昊, 索艳慧

PDF(3090 KB)
PDF(3090 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (3) : 520-529. DOI: 10.13745/j.esf.sf.2023.5.90
人工智能与地质应用

机器学习:海底矿产资源智能勘探的新途径

作者信息 +

Machine learning: A new approach to intelligent exploration of seafloor mineral resources

Author information +
History +

摘要

海底蕴藏着丰富的关键矿产资源,是当前研究的热点,也是未来产业新领域。随着海洋探测技术的不断进步,海底矿产勘探的数据量和数据维数急剧增加,给数据处理与解释带来了巨大困难和挑战。面对海量数据,传统的数据解释与分析方法暴露出许多问题。机器学习以其强大的自学能力,为无法解决或难以解决的问题提供了一系列智能分析决策方案,提高了数据分析的效率,是海底矿产资源智能勘探的新途径。近年来,机器学习在地球科学领域获得了广泛的关注和研究。为此,围绕机器学习技术应用于海底资源勘探技术,本文首先简要介绍了机器学习中经典的模型算法,然后详细阐述了机器学习在海底能源矿产和金属矿产两个方面的应用现状,最后总结了机器学习在海底矿产智能勘探领域的应用前景,指出了现有研究中存在的问题,提出了解决方案和未来的发展方向。

Abstract

The seafloor is characterized by abundant key mineral resources, which is a hotspot of current research and a new field of industry in the future. With the continuous progress of ocean exploration technology, the volume and dimensions of data from seafloor mineral exploration have increased dramatically, which has brought great difficulties and challenges to data processing and interpretation. In the face of massive data, traditional data interpretation and analysis methods expose many problems. Machine learning, with its strong self-learning ability, provides a series of intelligent analysis and decision-making solutions for unsolvable or difficult problems, improving the efficiency of data analysis. It is a new way for the intelligent exploration of subsea mineral resources. In recent years, machine learning has obtained extensive attention and research in the field of geosciences. Therefore, focusing on the application of machine learning to seafloor resource exploration technology, this paper firstly briefly introduces the classical model algorithms in machine learning; then elaborates on the application status of machine learning in two aspects of seafloor energy resources and metal mineral, and finally summarizes the application prospects of machine learning in the field of intelligent exploration of seafloor minerals, points out the problems in existing research, and proposes solutions and future development directions.

关键词

机器学习 / 铁锰结核 / 富钴结壳 / 天然气水合物 / 海底矿产

Key words

machine learning / ferromanganese nodule / cobalt-rich crusts / natural gas hydrate / seafloor minerals

中图分类号

P744;TP181;TP183

引用本文

导出引用
刘洋 , 李三忠 , 钟世华 , . 机器学习:海底矿产资源智能勘探的新途径. 地学前缘. 2024, 31(3): 520-529 https://doi.org/10.13745/j.esf.sf.2023.5.90
Yang LIU, Sanzhong LI, Shihua ZHONG, et al. Machine learning: A new approach to intelligent exploration of seafloor mineral resources[J]. Earth Science Frontiers. 2024, 31(3): 520-529 https://doi.org/10.13745/j.esf.sf.2023.5.90

参考文献

[1]
PETERSEN S. Marine mineral resources[M]//HARFF J, MESCHEDE M, PETERSEN S, et al. Encyclopedia of marine geosciences. Dordrecht: Springer, 2016: 475-480.
[2]
PETERSEN S, KRÄTSCHELL A, AUGUSTIN N, et al. News from the seabed-geological characteristics and resource potential of deep-sea mineral resources[J]. Marine Policy, 2016, 70: 175-187.
[3]
RONA P A. The changing vision of marine minerals[J]. Ore Geology Reviews, 2007, 33(3): 618-666.
[4]
石学法, 符亚洲, 李兵, 等. 我国深海矿产研究: 进展与发现(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(2): 305-318.
[5]
周守为, 李清平, 朱海山, 等. 海洋能源勘探开发技术现状与展望[J]. 中国工程科学, 2016, 18(2): 19-31.
[6]
HEIN J R, KOSCHINSKY A, KUHN T. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1(3): 158-169.
[7]
杨燕子, 陈华勇. 大洋富钴结壳研究进展及展望[J]. 大地构造与成矿学, 2023, 47(1): 1-19.
[8]
HANNINGTON M, JAMIESON J, MONECKE T, et al. The abundance of seafloor massive sulfide deposits[J]. Geology, 2011, 39(12): 1155-1158.
[9]
KVENVOLDEN K. Gas hydrates: geological perspective and global change[J]. Reviews of Geophysics, 1993, 31(2): 173-187.
[10]
BERGEN K J, JOHNSON P A, DE HOOP M V, et al. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science, 2019, 363(6433): eaau0323.
[11]
DAI H C, MACBETH C. Automatic picking of seismic arrivals in local earthquake data using an artificial neural network[J]. Geophysical Journal International, 1995, 120(3): 758-774.
[12]
DOWLA F, TAYLOR S R, ANDERSON R W. Seismic discrimination with artificial neural networks: preliminary results with regional spectral data[J]. Bulletin of the Seismological Society of America, 1990, 80(5): 1346-1373.
[13]
DYSART P, PULLI J. Regional seismic event classification at the NORESS array: seismological measurements and the use of trained neural networks[J]. Bulletin of the Seismological Society of America, 1990, 80(6B): 1910-1933.
[14]
周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573, 777.
[15]
周永章, 张良均, 张奥多, 等. 地球科学大数据挖掘与机器学习[M]. 广州: 中山大学出版社, 2018.
[16]
REICHSTEIN M, CAMPS-VALLS G, STEVENS B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019, 566(7743): 195-204.
[17]
COX D R. The regression analysis of binary sequences[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1959, 21(1): 238.
[18]
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[19]
VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999.
[20]
BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
[21]
CHANG C C, LIN C J. LIBSVM[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 1-27.
[22]
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.
[23]
BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140.
[24]
LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[25]
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[26]
ABDEYAZDAN M. Data clustering based on hybrid K-harmonic means and modifier imperialist competitive algorithm[J]. The Journal of Supercomputing, 2014, 68(2): 574-598.
[27]
FRADKIN D. Within-class and unsupervised clustering improve accuracy and extract local structure for supervised classification[D]. New Brunswick: Rutgers, The State University of New Jersey, 2006.
[28]
GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: The MIT Press, 2016.
[29]
BOURLARD H, KAMP Y. Auto-association by multilayer perceptrons and singular value decomposition[J]. Biological Cybernetics, 1988, 59(4): 291-294.
[30]
ZHAI J H, ZHANG S F, CHEN J F, et al. Autoencoder and its various variants[C]//Proceedings of 2018 IEEE international conference on systems, man, and cybernetics (SMC). Miyazaki: IEEE, 2018: 415-419.
[31]
LIM B, YU H, YOON D, et al. Machine learning derived AVO analysis on marine 3D seismic data over gas reservoirs near South Korea[J]. Journal of Petroleum Science and Engineering, 2021, 197: 108105.
[32]
ZHU L Q, WEI J G, WU S G, et al. Application of unlabelled big data and deep semi-supervised learning to significantly improve the logging interpretation accuracy for deep-sea gas hydrate-bearing sediment reservoirs[J]. Energy Reports, 2022, 8: 2947-2963.
[33]
MONDAL I, SINGH H K. Core-log integration and application of machine learning technique for better reservoir characterisation of Eocene carbonates, Indian offshore[J]. Energy Geoscience, 2022, 3(1): 49-62.
[34]
YOU J C, CAO J X, WANG X J, et al. Shear wave velocity prediction based on LSTM and its application for morphology identification and saturation inversion of gas hydrate[J]. Journal of Petroleum Science and Engineering, 2021, 205: 109027.
[35]
PANG Y M, SHI B B, GUO X W, et al. Source-reservoir relationships and hydrocarbon charging history in the central uplift of the South Yellow Sea Basin (East Asia): constrained by machine learning procedure and basin modeling[J]. Marine and Petroleum Geology, 2021, 123: 104731.
[36]
HAN F L, ZHANG H B, RUI J W, et al. Multiple point geostatistical simulation with adaptive filter derived from neural network for sedimentary facies classification[J]. Marine and Petroleum Geology, 2020, 118: 104406.
[37]
BROWN N, ROUBÍČKOVÁ A, LAMPAKI I, et al. Machine learning on Crays to optimize petrophysical workflows in oil and gas exploration[J]. Concurrency and Computation: Practice and Experience, 2020, 32(20): e5655.
[38]
MUKHERJEE B, SAIN K. Prediction of reservoir parameters in gas hydrate sediments using artificial intelligence (AI): a case study in Krishna-Godavari Basin (NGHP Exp-02)[J]. Journal of Earth System Science, 2019, 128(7): 199.
[39]
CHONG L, SINGH H, CREASON C G, et al. Application of machine learning to characterize gas hydrate reservoirs in Mackenzie Delta (Canada) and on the Alaska north slope (USA)[J]. Computational Geosciences, 2022, 26(5): 1151-1165.
[40]
SINGH H, SEOL Y, MYSHAKIN E M. Prediction of gas hydrate saturation using machine learning and optimal set of well-logs[J]. Computational Geosciences, 2021, 25(1): 267-283.
[41]
LI C, LIU X. Research on the estimate of gas hydrate saturation based on LSTM recurrent neural network[J]. Energies, 2020, 13(24): 6536.
[42]
LEE J, BYUN J, KIM B, et al. Delineation of gas hydrate reservoirs in the Ulleung Basin using unsupervised multi-attribute clustering without well log data[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 326-337.
[43]
DUTKIEWICZ A, JUDGE A, MÜLLER R D. Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean[J]. Geology, 2020, 48(3): 293-297.
[44]
HARI V N, KALYAN B, CHITRE M, et al. Spatial modeling of deep-sea ferromanganese nodules with limited data using neural networks[J]. IEEE Journal of Oceanic Engineering, 2018, 43(4): 997-1014.
[45]
JULIANI C, JULIANI E. Deep learning of terrain morphology and pattern discovery via network-based representational similarity analysis for deep-sea mineral exploration[J]. Ore Geology Reviews, 2021, 129: 103936.
[46]
MIMURA K, NAKAMURA K, TAKAO K, et al. Automated detection of hydrothermal emission signatures from multi-beam echo sounder images using deep learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 2703-2710.
[47]
GAZIS I Z, GREINERT J. Importance of spatial autocorrelation in machine learning modeling of polymetallic nodules, model uncertainty and transferability at local scale[J]. Minerals, 2021, 11(11): 1172.
[48]
SCHOENING T, KUHN T, NATTKEMPER T. Estimation of poly-metallic nodule coverage in benthic images[C]//Proceedings of the 41st conference of the Underwater Mining Institute (UMI). Shanghai: UMI, 2012: 15-20.
[49]
邓君兰, 董澧辉, 宋伟, 等. 基于Sea-thru和Mask R-CNN的深海多金属结核图像处理[J]. 矿冶工程, 2022, 42(2): 9-13.
[50]
PRABHAKARAN K, VARSHNEY N, RAMESH R, et al. Underwater image and video processing to detect polymetallic nodule abundance using haar-cascade and template matching feature[C]//Proceedings of OCEANS 2022-Chennai. Chennai: IEEE, 2022: 1-6.
[51]
GAZIS I Z, SCHOENING T, ALEVIZOS E, et al. Quantitative mapping and predictive modeling of Mn nodules’ distribution from hydroacoustic and optical AUV data linked by random forests machine learning[J]. Biogeosciences, 2018, 15(23): 7347-7377.
[52]
HU G, ZHAO H M, HAN F L, et al. Recognition of cobalt-rich crusts based on multi-classifier fusion in seafloor mining environments[J]. Marine Georesources & Geotechnology, 2021, 39(10): 1205-1214.
[53]
HONG F, HUANG M Y, FENG H H, et al. First demonstration of recognition of manganese crust by deep-learning networks with a parametric acoustic probe[J]. Minerals, 2022, 12(2): 249.
[54]
NEETTIYATH U, SATO T, SANGEKAR M, et al. Identification of manganese crusts in 3D visual reconstructions to filter geo-registered acoustic sub-surface measurements[C]//Proceedings of OCEANS 2015-MTS/IEEE Washington. Washington: IEEE, 2015: 1-6.
[55]
NEETTIYATH U, THORNTON B, SANGEKAR M, et al. An AUV based method for estimating hectare-scale distributions of deep sea cobalt-rich manganese crust deposits[C]//Proceedings of OCEANS 2019-Marseille. Marseille: IEEE, 2019: 1-6.
[56]
LIU L S, LU J L, TAO C H, et al. Fuzzy forest machine learning predictive model for mineral prospectivity: a case study on southwest Indian ridge 48. 7°E-50. 5°E[J]. Natural Resources Research, 2022, 31(1): 99-116.
[57]
ZHANG X N, SONG S J, LI J B, et al. Robust LS-SVM regression for ore grade estimation in a seafloor hydrothermal sulphide deposit[J]. Acta Oceanologica Sinica, 2013, 32(8): 16-25.
[58]
ZHANG X N, SONG S J, WU C. Robust Bayesian classification with incomplete data[J]. Cognitive Computation, 2013, 5(2): 170-187.

基金

青岛海洋科学与技术试点国家实验室山东省专项(2022QNLM05032)
中央高校基本科研业务费专项(202172002)
国家自然科学基金项目(42203066)
山东省自然科学基金项目(ZR2020QD027)

评论

PDF(3090 KB)

Accesses

Citation

Detail

段落导航
相关文章

/