岩石有机碳风化及其控制因素

王野, 陈旸, 陈骏

PDF(2918 KB)
PDF(2918 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (2) : 402-409. DOI: 10.13745/j.esf.sf.2023.3.7
非主题来稿选登

岩石有机碳风化及其控制因素

作者信息 +

Petrogenic organic carbon weathering and its controlling factors—a review

Author information +
History +

摘要

岩石有机碳为岩石地层中的有机碳,是地球上重要的碳储库。岩石有机碳的氧化、风化过程向大气排放二氧化碳,是地质碳循环过程的关键环节,对维持地球长尺度碳平衡以及表层环境的长期宜居性有重要意义。近年来,岩石有机碳氧化、风化过程的研究取得了显著发展,相关研究已经从剖面拓展到流域尺度,定量方法也在日益精确。本文系统综述了近些年国内外针对岩石有机碳自身结构性质、风化速率定量方法、控制因素和风化通量统计等问题的研究现状,以期对全球范围内岩石有机碳风化在研究地质碳循环过程中的关键性和当前进展及发展趋势有更加系统性的认识,并对相应的关键性科学问题进行更加深入系统的研究。

Abstract

Petrogenic-derived organic carbon is an important carbon storage on Earth. Oxidation of petrogenic organic carbon releases carbon dioxide into the atmosphere—a key process in the geological carbon cycle. This process is of great significance for maintaining long-scale carbon balance on Earth and long-term habitability of the Earth’s surface environment. In recent years, research advancement has been made on petrogenic organic carbon weathering. This paper systematically reviews the current research status at home and abroad, focusing on carbon structural properties, quantitative methods for weathering rate, weathering controlling factors, and weathering flux statistics, in order to improve systematic understanding of petrogenic organic carbon and promote in-depth research on related key scientific issues.

关键词

岩石有机碳 / 地质碳循环 / 大陆风化 / 铼地球化学

Key words

petrogenic organic carbon / geological carbon cycle / continental weathering / rhenium geochemistry

中图分类号

P512.1;P595;X142

引用本文

导出引用
王野 , 陈旸 , 陈骏. 岩石有机碳风化及其控制因素. 地学前缘. 2024, 31(2): 402-409 https://doi.org/10.13745/j.esf.sf.2023.3.7
Ye WANG, Yang CHEN, Jun CHEN. Petrogenic organic carbon weathering and its controlling factors—a review[J]. Earth Science Frontiers. 2024, 31(2): 402-409 https://doi.org/10.13745/j.esf.sf.2023.3.7

参考文献

[1]
BERNER R A, LASAGA A C, GARRELS R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683.
[2]
FOSTER G L, ROYER D L, LUNT D J. Future climate forcing potentially without precedent in the last 420 million years[J]. Nature Communications, 2017, 8: 14845.
[3]
RUDDIMAN W, RAYMO M, PRELL W, et al. The uplift-climate connection: a synthesis[M]. New York: Plenum Press, 1997: 471-515.
[4]
GARRELS R, LERMAN A, MACKENZIE F. Controls of atmospheric O2 and CO2: past, present, and future[J]. American Scientist - AMER SCI, 1976, 64: 306-15.
[5]
BOUCHEZ J, GALY V, HILTON R G, et al. Source, transport and fluxes of Amazon River particulate organic carbon:insights from river sediment depth-profiles[J]. Geochimica et Cosmochimica Acta, 2014, 133: 280-298.
[6]
BOUCHEZ J, BEYSSAC O, GALY V, et al. Oxidation of petrogenic organic carbon in the Amazon floodplain as a source of atmospheric CO2[J]. Geology, 2010, 38(3): 255-258.
[7]
HILTON R G, GAILLARDET J, CALMELS D, et al. Geological respiration of a mountain belt revealed by the trace element rhenium[J]. Earth and Planetary Science Letters, 2014, 403: 27-36.
[8]
HILTON R G, WEST A J. Mountains, erosion and the carboncycle[J]. Nature Reviews Earth and Environment, 2020, 1(6): 284-299.
[9]
BERNER R A. Atmospheric carbon dioxide levels over Phanerozoic time[J]. Science, 1990, 249(4975): 1382-1386.
[10]
BERNER R A. The Phanerozoic carbon cycle: CO2 and O2[M]. Oxford: Oxford University Press, 2004.
[11]
HORAN K, HILTON R G, SELBY D, et al. Mountain glaciation drives rapid oxidation of rock-bound organic carbon[J]. Science Advances, 2017, 3(10): e1701107.
[12]
JAFFE L A, PEUCKER-EHRENBRINK B, PETSCH S T. Mobility of rhenium, platinum group elements and organic carbon during black shale weathering[J]. Earth and Planetary Science Letters, 2002, 198(3/4): 339-353.
[13]
DALAI T K, SINGH S K, TRIVEDI J R, et al. Dissolved rhenium in the Yamuna River system and the Ganga in the Himalaya: role of black shale weathering on the budgets of Re, Os, and U in rivers and CO2 in the atmosphere[J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 29-43.
[14]
HORAN K, HILTON R G, DELLINGER M, et al. Carbon dioxide emissions by rock organic carbon oxidation and the net geochemical carbon budget of the Mackenzie River Basin[J]. American Journal of Science, 2019, 319(6): 473-499.
[15]
GALY V, BEYSSAC O, EGLINTON T. Selective recycling of graphite during continental erosion: a long-term stabilization of C in the crust[C/OL]// Proceedings of AGU fall meeting. San Francisco: AGU, (2008-12)[2019-10-14]. https://ui.adsabs.harvard.edu/abs/2008AGUFM.U23C0073G/abstract.
[16]
GALY V, BEYSSAC O, FRANCE-LANORD C, et al. Recycling of graphite during Himalayan erosion: a geological stabilization of carbon in the crust[J]. Science, 2008, 322(5903): 943-945.
[17]
GALY V, EGLINTON T. Protracted storage of biospheric carbon in the Ganges-Brahmaputra basin[J]. Nature Geoscience, 2011, 4: 843-847.
[18]
LI G K, FISCHER W W, LAMB M P, et al. Coal fly ash is a major carbon flux in the Chang Jiang (Yangtze River) basin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(21): e1921544118.
[19]
BLAIR N E, LEITHOLD E L, ALLER R C. From bedrock to burial: the evolution of particulate organic carbon across coupled watershed-continental margin systems[J]. Marine Chemistry, 2004, 92(1): 141-156.
[20]
汪进, 曲远馨, 金章东. 中国主要河流的颗粒有机碳来源及通量[J]. 第四纪研究, 2021, 41(4): 1-13.
[21]
GAILLARDET J, DUPRÉ B, LOUVAT P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/2/3/4): 3-30.
[22]
李文昌, 李建威, 谢桂青, 等. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 2022, 29(1): 1-13.
[23]
SELBY D, CREASER R A. Re-Os geochronology of organic rich sediments: an evaluation of organic matter analysis methods[J]. Chemical Geology, 2003, 200(3): 225-40.
[24]
COHEN A S, COE A L, BARTLETT J M, et al. Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater[J]. Earth and Planetary Science Letters, 1999, 167(3/4): 159-173.
[25]
TAYLOR S R, MCCLENNAN S M. The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks[M]. Oxford: Blackwell Scientific, 1985.
[26]
汪齐连, 赵志琦, 刘丛强, 等. 大陆风化过程的锂同位素地球化学研究进展[J]. 地学前缘, 2008, 15(6): 332-337.
[27]
BROOKINS D G. Rhenium as analog for fissiogenic technetium:Eh-pH diagram (25 ℃, 1 bar) constraints[J]. Applied Geochemistry, 1986, 1(4): 513-517.
[28]
CRUSIUS J, THOMSON J. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments[J]. Geochimica et Cosmochimica Acta, 2000, 64(13): 2233-42.
[29]
COLODNER D, SACHS J, RAVIZZA G, et al. The geochemical cycle of rhenium: a reconnaissance[J]. Earth and Planetary Science Letters, 1993, 117(1/2): 205-221.
[30]
CALMELS D, GAILLARDET J, BRENOT A, et al. Sustained sulfide oxidation by physical erosion processes in the Mackenzie River Basin: climatic perspectives[J]. Geology, 2007, 35(11): 1003-1006.
[31]
WANG Y, LI S L, XU P X, et al. Rapid and significant perturbations on the global geochemical cycle of rhenium by human activities: a case study in Yangtze River Basin[J]. Applied Geochemistry, 2024, 162: 105912.
[32]
OGRIČ M, DELLINGER M, GRANT K E, et al. Low rates of rock organic carbon oxidation and anthropogenic cycling of rhenium in a slowly denuding landscape[J]. Earth Surface Processes and Landforms, 2023, 48(6): 1202-1218.
[33]
XU K, PIERCE D A, HRMA P, et al. Rhenium volatilization in waste glasses[J]. Journal of Nuclear Materials, 2015, 464: 382-388.
[34]
RAHAMAN W, SINGH S K, SHUKLA A D. Rhenium in Indian rivers: sources, fluxes, and contribution to oceanic budget[J]. Geochemistry, Geophysics, Geosystems, 2012, 13: Q08019.
[35]
MILLER C A, PEUCKER-EHRENBRINK B, WALKER B D, et al. Re-assessing the surface cycling of molybdenum and rhenium[J]. Geochimica et Cosmochimica Acta, 2011, 75(22): 7146-7179.
[36]
TUREKIAN K K, HOLLAND H D. Treatise on geochemistry[M]. 2nd ed. Chicago: Elsevier Science Ltd, 2013.
[37]
CHANG S, BERNER R A. Coal weathering and the geochemical carbon cycle[J]. Geochimica et Cosmochimica Acta, 1999, 63(19/20): 3301-3310.
[38]
BOLTON E A, BERNER R, PETSCH S. The weathering of sedimentary organic matter as a control on atmospheric O2: II. Theoretical modeling[J]. American Journal of Science, 2006, 306: 575-615.
[39]
HORAN K, HILTON R G, MCCOY-WEST A J, et al. Unravelling the controls on the molybdenum isotope ratios of river waters[J]. Geochemical Perspectives Letters, 2020, 13: 1-6.
[40]
HALES T C, ROERING J J. A frost “buzzsaw” mechanism for erosion of the eastern Southern Alps, New Zealand[J]. Geomorphology, 2009, 107(3/4): 241-253.
[41]
PETSCH S T, EGLINGTON T I, EDWARDS K J. 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering[J]. Science, 2001, 292(5519): 1127-1131.
[42]
MÄRKI L, LUPKER M, FRANCE-LANORD C, et al. An unshakable carbon budget for the Himalaya[J]. Nature Geoscience, 2021, 14: 745-750.
[43]
HORWATH W. The Phanerozoic carbon cycle[J]. Vadose Zone Journal, 2006, 5(4): 1155-1156.
[44]
LIU F, KERP H, PENG H P, et al. Palynostratigraphy of the Devonian-Carboniferous transition in the Tulong section in South Tibet: a Hangenberg Event sequence analogue in the Himalaya-Tethys zone[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 531: 108704.

脚注

基金

国家自然科学基金重大项目(41991321)
国家自然科学基金重大项目(41991252)

评论

PDF(2918 KB)

Accesses

Citation

Detail

段落导航
相关文章

/