耦合CO2脱气的岩溶地热水结垢趋势定量分析

吕良华, 王水

PDF(907 KB)
PDF(907 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (3) : 402-409. DOI: 10.13745/j.esf.sf.2023.2.82
地下水与地热资源

耦合CO2脱气的岩溶地热水结垢趋势定量分析

作者信息 +

Quantitative analysis of scaling tendency of karstic geothermal water coupled with CO2 degassing

Author information +
History +

摘要

岩溶地热系统是最具开发潜力的水热型地热系统之一,在水热型地热资源利用中,地热水结垢(尤其是井下结垢)是目前面临的最普遍、最重要的问题之一,制约着地热水资源可持续利用。针对岩溶地热水结垢趋势分析方法存在的不足,在重点考虑CO2脱气这一重要过程对结垢趋势影响的基础上,利用化学热力学模拟技术构建了一种耦合CO2脱气过程的结垢趋势定量分析的改进方法,并将其应用于南京汤山岩溶地热区。结果表明汤山地区地热水不具有发生SiO2结垢的趋势;在井口有发生碳酸盐结垢趋势,主要成分为CaCO3;井筒中下部有发生不同程度的硫酸盐结垢趋势,主要成分为CaSO4,SrSO4,BaSO4。本研究在改进结垢趋势分析方法不足的同时,为防垢除垢工作提供了理论基础和方法指导,可有力促进地热水资源的可持续利用。

Abstract

Low-to-medium temperature fluid reservoirs hosted in carbonate rocks represent a promising yet relatively unknown hydrothermal geothermal system. Scaling of geothermal water, particularly underground scaling, poses a significant challenge in the sustainable utilization of geothermal resources. To address the limitations of current methods for analyzing karstic geothermal water scaling trends, a chemical thermodynamic simulation approach was employed to develop an enhanced method for quantitatively assessing scaling trends in geothermal water, considering CO2 degassing effects. This study focused on the influence of CO2 degassing on scaling trends. The scaling tendency of the Tangshan karstic geothermal area in Nanjing was quantitatively analyzed using the improved method. Results indicate that the geothermal water in the Tangshan area exhibits a propensity for carbonate scaling at the wellhead, primarily composed of CaCO3, and varying degrees of sulfate scaling in the middle and lower sections of the wellbore, with main components including CaSO4, SrSO4, and BaSO4. By addressing the limitations of existing scaling trend analysis methods, this study offers a theoretical foundation and methodological guidance for scale prevention and removal, thereby facilitating the sustainable utilization of geothermal water resources.

关键词

岩溶地热水 / 可持续利用 / 结垢趋势分析 / CO2脱气 / 地球化学模拟 / 汤山

Key words

karstic geothermal water / sustainable utilization / analysis of scaling tendency / CO2 degassing / geochemical modeling / Tangshan

中图分类号

P641

引用本文

导出引用
吕良华 , 王水. 耦合CO2脱气的岩溶地热水结垢趋势定量分析. 地学前缘. 2024, 31(3): 402-409 https://doi.org/10.13745/j.esf.sf.2023.2.82
Lianghua LÜ, Shui WANG. Quantitative analysis of scaling tendency of karstic geothermal water coupled with CO2 degassing[J]. Earth Science Frontiers. 2024, 31(3): 402-409 https://doi.org/10.13745/j.esf.sf.2023.2.82

参考文献

[1]
庞忠和, 孔彦龙, 庞菊梅, 等. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 2017, 32(11): 1224-1230.
[2]
KONG Y L, PANG Z H, SHAO H B, et al. Recent studies on hydrothermal systems in China: a review[J]. Geothermal Energy, 2014, 2(1): 19.
[3]
MICHAEL K, GOLAB A, SHULAKOVA V, et al. Geological storage of CO2 in saline aquifers: a review of the experience from existing storage operations[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 659-667.
[4]
庞菊梅, 庞忠和, 孔彦龙, 等. 岩溶热储井间连通性的示踪研究[J]. 地质科学, 2014, 49(3): 915-923.
[5]
MONTANARI D, MINISSALE A, DOVERI M, et al. Geothermal resources within carbonate reservoirs in western Sicily (Italy): a review[J]. Earth-Science Reviews, 2017, 169: 180-201.
[6]
庞忠和, 胡圣标, 汪集旸. 中国地热能发展路线图[J]. 科技导报, 2012, 30(32): 18-24.
[7]
刘金侠, 毛翔, 季汉成, 等. 东濮凹陷奥陶系岩溶型热储分布特征及成因研究[J]. 地学前缘, 2017, 24(3): 180-189.
[8]
王延欣, 刘世良, 边庆玉, 等. 甘孜地热井结垢分析及防垢对策[J]. 新能源进展, 2015, 3(3): 202-206.
[9]
ÇELIK A, TOPÇU G, BABA A, et al. Experimental modeling of silicate-based geothermal deposits[J]. Geothermics, 2017, 69: 65-73.
[10]
IKEDA R, UEDA A. Experimental field investigations of inhibitors for controlling silica scale in geothermal brine at the Sumikawa geothermal plant, Akita Prefecture, Japan[J]. Geothermics, 2017, 70: 305-313.
[11]
NITSCHKE F, HELD S, HIMMELSBACH T, et al. THC simulation of halite scaling in deep geothermal single well production[J]. Geothermics, 2017, 65: 234-243.
[12]
余琴, 杨平恒, 程群, 等. 重庆主城区钻井地热水结垢及腐蚀趋势研究[J]. 西南大学学报(自然科学版), 2017, 39(10): 95-101.
[13]
PAUWELS J, SALAH S, VASILE M, et al. Characterization of scaling material obtained from the geothermal power plant of the Balmatt site, Mol[J]. Geothermics, 2021, 94: 102090.
[14]
何雨江, 刘肖, 邢林啸, 等. 河北保定岩溶地热结垢过程模拟及防垢对策[J]. 地学前缘, 2022, 29(4): 430-437.
[15]
于湲, 周训, 方斌. 北京城区地下热水结垢趋势的判断和分析[J]. 城市地质, 2007, 2(2): 14-18.
[16]
BOZAU E, HÄUßLER S, VAN BERK W. Hydrogeochemical modelling of corrosion effects and barite scaling in deep geothermal wells of the North German Basin using PHREEQC and PHAST[J]. Geothermics, 2015, 53: 540-547.
[17]
MROCZEK E, GRAHAM D, SIEGA C, et al. Silica scaling in cooled silica saturated geothermal water: comparison between Wairakei and Ohaaki geothermal fields, New Zealand[J]. Geothermics, 2017, 69: 145-152.
[18]
BOZAU E, VAN BERK W. Hydrogeochemical modeling of deep formation water applied to geothermal energy production[J]. Procedia Earth and Planetary Science, 2013, 7: 97-100.
[19]
HENLEY R W. pH and silica scaling control in geothermal field development[J]. Geothermics, 1983, 12(4): 307-321.
[20]
GARCÍA A V, THOMSEN K, STENBY E H. Prediction of mineral scale formation in geothermal and oilfield operations using the extended UNIQUAC model[J]. Geothermics, 2005, 34(1): 61-97.
[21]
GARCÍA A V, THOMSEN K, STENBY E H. Prediction of mineral scale formation in geothermal and oilfield operations using the Extended UNIQUAC model[J]. Geothermics, 2006, 35(3): 239-284.
[22]
LI Y M, PANG Z H, GALECZKA I M. Quantitative assessment of calcite scaling of a high temperature geothermal well in the Kangding geothermal field of Eastern Himalayan Syntax[J]. Geothermics, 2020, 87: 101844.
[23]
刘明言. 地热流体的腐蚀与结垢控制现状[J]. 新能源进展, 2015, 3(1): 38-46.
[24]
TARCAN G. Mineral saturation and scaling tendencies of waters discharged from wells (>150 ℃) in geothermal areas of Turkey[J]. Journal of Volcanology and Geothermal Research, 2005, 142(3/4): 263-283.
[25]
朱家玲, 姚涛. 地热水腐蚀结垢趋势的判断和计算[J]. 工业用水与废水, 2004, 35(2): 23-25.
[26]
SONG J C, LIU M Y, SUN X X. Model analysis and experimental study on scaling and corrosion tendencies of aerated geothermal water[J]. Geothermics, 2020, 85: 101766.
[27]
DIAMOND L W, ALT-EPPING P. Predictive modelling of mineral scaling, corrosion and the performance of solute geothermometers in a granitoid-hosted, enhanced geothermal system[J]. Applied Geochemistry, 2014, 51: 216-228.
[28]
HUSSAIN A, KHOSHNEVIS N, MEULENBROEK B, et al. Modelling mineral-scaling in geothermal reservoirs using both a local equilibrium and a kinetics approach[C/OL]. 2021[2023-04-11]. https://doi.org/10.5194/egusphere-egu21-16033.
[29]
DEMIR M M, BABA A, ATILLA V, et al. Types of the scaling in hyper saline geothermal system in northwest Turkey[J]. Geothermics, 2014, 50: 1-9.
[30]
LARSON T E, SOLLO F W. Loss in water main carrying capacity[J]. Journal of American Water Works Association, 1967, 59(12): 1565-1572.
[31]
RYZNAR J W. A new index for determining amount of calcium scale formed by a water[J]. Journal of American Water Works Association, 1944, 36(4): 472486.
[32]
LANGELIER W F. Chemical equilibria in water treatment[J]. Journal AWWA, 1946, 38(2): 169-178.
[33]
RIDDICK T M. The mechanism of corrosion of water pipes[J]. Water Sewage Works, 1944, 91: 133-138.
[34]
PANG Z H, REED M. Theoretical chemical thermometry on geothermal waters: problems and methods[J]. Geochimica et Cosmochimica Acta, 1998, 62(6): 1083-1091.
[35]
李义曼, 庞忠和. 地热系统碳酸钙垢形成原因及定量化评价[J]. 新能源进展, 2018, 6(4): 274-281.
[36]
徐成华, 于丹丹. 汤山地热水补给及受轨道交通工程的影响[J]. 水资源保护, 2018, 34(3): 57-61.
[37]
LU L H, PANG Z H, KONG Y L, et al. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development[J]. Hydrogeology Journal, 2018, 26(5): 1705-1719.
[38]
HASHEMI S H, DINMOHAMMAD M, BAGHERI M. Optimization of extended UNIQUAC model parameter for mean activity coefficient of aqueous chloride solutions using Genetic+PSO[J]. Journal of Chemical and Petroleum Engineering, 2020, 54(1): 1-12.
[39]
THOMSEN K, ILIUTA M C, RASMUSSEN P. Extended UNIQUAC model for correlation and prediction of vapor-liquid-liquid-solid equilibria in aqueous salt systems containing non-electrolytes. Part B. Alcohol (ethanol, propanols, butanols)-water-salt systems[J]. Chemical Engineering Science, 2004, 59(17): 3631-3647.
[40]
HASHEMI S H, DINMOHAMMAD M, MOUSAVI DEHGHANI S A. Thermodynamic prediction of Ba and Sr sulfates scale formation in water flooding projects in oil reservoirs[J]. Journal of Mineral Resources Engineering, 2019, 4(2): 23-37.
[41]
REED M, SPYCHER N, PALANDRI J. SOLVEQ-XPT: A computer program for computing aqueous-mineral-gas equilibria[R/OL]. 2016[2023-04-11]. https://pages.uoregon.edu/palandri/data/solveq-xpt%20guide_v.2.23.pdf.
[42]
DUAN Z H, SUN R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar[J]. Chemical Geology, 2003, 193(3/4): 257-271.
[43]
DUAN Z H, SUN R, ZHU C, et al. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO42-[J]. Marine Chemistry, 2006, 98(2/3/4): 131-139.
[44]
GUNNARSSON I, ARNÓRSSON S. Impact of silica scaling on the efficiency of heat extraction from high-temperature geothermal fluids[J]. Geothermics, 2005, 34(3): 320-329.

基金

国家自然科学基金项目(42202281)
江苏省卓越博士后计划项目(2023ZB141)

评论

PDF(907 KB)

Accesses

Citation

Detail

段落导航
相关文章

/