东营凹陷北带基岩风化壳储层发育特征及控制因素

朱茂林, 刘震, 刘惠民, 张鹏飞, 赵振

PDF(4172 KB)
PDF(4172 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (3) : 324-336. DOI: 10.13745/j.esf.sf.2023.2.65
成烃作用与油气成储

东营凹陷北带基岩风化壳储层发育特征及控制因素

作者信息 +

Development characteristics and controlling factors of bedrock weathering crust reservoirs in the northern belt of the Dongying sag

Author information +
History +

摘要

东营凹陷北带西段王庄潜山油藏的发现,揭示了太古宙基岩储层极大的油气勘探潜力。本文基于露头、岩心、薄片、测井、成像测井、孔渗数据以及试油资料,对东营凹陷北带太古宙基岩风化壳储层发育特征进行了总结,对其主控因素进行了深入探索,取得了以下主要认识:(1)太古宙基岩主要为二长花岗岩和花岗闪长岩,局部发育花岗片麻岩,岩石脆性较强,容易产生裂缝,具备形成优质储层的岩性基础。(2)基岩风化壳储层纵向上可划分为崩解型储层、溶蚀-崩解型储层以及残积-崩解型储层三类。(3)崩解型储层主要以构造缝、溶蚀缝和节理缝为主,储层物性较差,平均孔隙度为2.2%,平均渗透率为0.25 mD,主要分布在构造高部位;溶蚀-崩解型储层表现为明显的双层结构,上覆溶蚀层发育厚度为50~150 m,储层物性好,平均孔隙度为4.7%,平均渗透率为1.3 mD,储集空间以溶蚀孔、溶蚀增强缝为主,下伏的崩解层物性差,储集空间以裂缝为主,主要分布在构造中低部位;残积-崩解型储层表现为上薄下厚特点,上覆残积层厚度分布在10~43 m,岩体松散破碎,储集空间以溶蚀孔为主,平均孔隙度为4.5%,平均渗透率为1.7 mD,下伏崩解层致密,块状结构明显,储集空间以各种成因的裂缝为主,主要分布在研究区临近构造高部位的缓坡带。(4)基岩风化壳储层物性及分布主要受控于4个因素:富含高脆性矿物含量的岩石影响裂缝的发育程度,构造应力控制裂缝的形成及产状分布,发达的断裂体系加速了基岩风化壳有效储层的形成,古海拔高程最终控制了基岩风化壳储层分布。研究成果对于东营凹陷以及其他断陷盆地基岩风化壳储层评价和油气勘探具有重要的借鉴意义。

Abstract

The discovery of the Wangzhuang buried-hill reservoir in the western section of the northern belt of the Dongying sag highlights the significant oil and gas exploration potential of Archean bedrock reservoirs. Based on data from outcrops, cores, thin sections, logging, imaging logging, porosity, permeability, and oil testing, this paper summarizes the development characteristics of Archean bedrock weathering crust reservoirs in the Dongying sag. It also delves into the main controlling factors. The results indicate: (1) Archean bedrocks mainly consist of monzogranite and granodiorite, with locally developed granite gneiss. These rocks are brittle and prone to fracturing, providing a lithological basis for high-quality reservoir formation. (2) Vertically, the bedrock weathering crust reservoirs can be categorized into three types: disintegration reservoirs, dissolution-disintegration reservoirs, and eluvial-disintegration reservoirs. (3) Disintegration reservoirs are primarily composed of structural fractures, dissolution fractures, and joint fractures. They exhibit poor physical properties with an average porosity of 2.2% and permeability of 0.25 mD, mainly concentrated in the upper part of the structure. Dissolution-disintegration reservoirs display a distinct double-layer structure. The overlying dissolution layer is 50-150 m thick with good physical properties, including dissolution pores and enhancement fractures, resulting in an average porosity of 4.7% and permeability of 1.3 mD. The underlying disintegration reservoirs have poor physical properties and are dominated by fractures, primarily located in the middle and lower parts of the structure. Eluvial-disintegration reservoirs are characterized by a thin upper layer and a thick lower layer. The overlying eluvium is 10-43 m thick, loose, and fragmented. The reservoir spaces are mainly composed of dissolution cavities, with an average porosity of 4.5% and permeability of 1.7 mD. The underlying disintegration layer is dense with a massive structure, and the reservoir spaces are primarily fracture-dominated, mainly distributed in the gentle slope belt near the higher part of the structure. (4) The physical properties and distribution of bedrock weathering crust reservoirs are controlled by four main factors: the presence of high brittle minerals in rocks influences fracture development, tectonic stress affects fracture formation and distribution, a developed fault system accelerates the formation of effective reservoirs, and paleo-elevation determines the distribution of bedrock weathering crust reservoirs. These research findings are crucial for evaluating bedrock weathering crust reservoirs and guiding oil and gas exploration in the Dongying sag and other faulted basins.

关键词

东营凹陷 / 太古宙 / 基岩 / 风化壳储层 / 控制因素

Key words

Dongying sag / Archean / bedrock / weathering crust reservoir / controlling factors

中图分类号

P618.130.21

引用本文

导出引用
朱茂林 , 刘震 , 刘惠民 , . 东营凹陷北带基岩风化壳储层发育特征及控制因素. 地学前缘. 2024, 31(3): 324-336 https://doi.org/10.13745/j.esf.sf.2023.2.65
Maolin ZHU, Zhen LIU, Huimin LIU, et al. Development characteristics and controlling factors of bedrock weathering crust reservoirs in the northern belt of the Dongying sag[J]. Earth Science Frontiers. 2024, 31(3): 324-336 https://doi.org/10.13745/j.esf.sf.2023.2.65

参考文献

[1]
HARRELSON D. Hydrocarbon occurrences in igneous and metamorphic rocks: plays of the 1990s[J]. AAPG Bulletin, 1989, 39: 85-95.
[2]
SALAH M G, ALSHARHAN A S. The Precambrian basement: a major reservoir in the rifted basin, Gulf of Suez[J]. Journal of Petroleum Science and Engineering, 1998, 19(3/4): 201-222.
[3]
CARVALHO I S, MENDES J C, COSTA T. The role of fracturing and mineralogical alteration of basement gneiss in the oil exhsudation in the Sousa Basin (Lower Cretaceous), northeastern Brazil[J]. Journal of South American Earth Sciences, 2013, 47: 47-54.
[4]
CUONG T X, WARREN J K. Bach hofield, a fractured granitic basement reservoir, Cuu Long Basin, offshore SE Vietnam: a “buried-hill” play[J]. Journal of Petroleum Geology, 2009, 32(2): 129-156.
[5]
窦立荣, 魏小东, 王景春, 等. 乍得Bongor盆地花岗质基岩潜山储层特征[J]. 石油学报, 2015, 36(8): 897-904, 925.
[6]
DOU L R, WANG J, WANG R C, et al. Precambrian basement reservoirs: case study from the Northern Bongor Basin, the Republic of Chad[J]. AAPG Bulletin, 2018, 102(9): 1803-1824.
[7]
赵健, 张光亚, 刘爱香, 等. 苏丹Muglad盆地6区基岩储层发育特征及其勘探意义[J]. 中国石油勘探, 2020, 25(4): 133-142.
[8]
谢文彦, 孟卫工, 张占文, 等. 辽河坳陷潜山内幕多期裂缝油藏成藏模式[J]. 石油勘探与开发, 2006, 33(6): 649-652.
[9]
邓运华. 渤海大中型潜山油气田形成机理与勘探实践[J]. 石油学报, 2015, 36(3): 253-261.
[10]
薛永安, 柴永波, 周园园. 近期渤海海域油气勘探的新突破[J]. 中国海上油气, 2015, 27(1): 1-9.
[11]
薛永安, 李慧勇. 渤海海域深层太古宇变质岩潜山大型凝析气田的发现及其地质意义[J]. 中国海上油气, 2018, 30(3): 1-9.
[12]
薛永安, 李慧勇, 许鹏, 等. 渤海海域中生界覆盖型潜山成藏认识与渤中13-2大油田发现[J]. 中国海上油气, 2021, 33(1): 13-22.
[13]
夏庆龙. 渤海油田近10年地质认识创新与油气勘探发现[J]. 中国海上油气, 2016, 28(3): 1-9.
[14]
胡志伟, 徐长贵, 杨波, 等. 渤海海域蓬莱9-1油田花岗岩潜山储层成因机制及石油地质意义[J]. 石油学报, 2017, 38(3): 274-285.
[15]
GUO Z Q, MA Y S, LIU W H, et al. Main factors controlling the formation of basement hydrocarbon reservoirs in the Qaidam Basin, western China[J]. Journal of Petroleum Science and Engineering, 2017, 149: 244-255.
[16]
伍劲, 高先志, 周伟, 等. 柴达木盆地东坪地区基岩风化壳与油气成藏[J]. 新疆石油地质, 2018, 39(6): 666-672.
[17]
王昕, 周心怀, 徐国胜, 等. 渤海海域蓬莱9-1花岗岩潜山大型油气田储层发育特征与主控因素[J]. 石油与天然气地质, 2015, 36(2): 262-270.
[18]
李建明, 梅小元, 汪立群, 等. 柴达木盆地东坪气藏基岩风化壳储层特征[C]//全国沉积学大会沉积学与非常规资源论文摘要集. 北京: 中国地质学会, 2015: 147-148.
[19]
黄建红, 谭先锋, 程承吉, 等. 花岗质基岩风化壳结构特征及油气地质意义: 以柴达木盆地东坪地区基岩风化壳为例[J]. 地球科学, 2016, 41(12): 2041-2060.
[20]
王景春, 窦立荣, 徐建国, 等. “两宽一高”地震资料在花岗岩潜山储层表征中的应用: 以乍得邦戈盆地为例[J]. 石油地球物理勘探, 2018, 53(2): 320-329.
[21]
徐守立, 尤丽, 毛雪莲, 等. 琼东南盆地松南低凸起周缘花岗岩潜山储层特征及控制因素[J]. 地球科学, 2019, 44(8): 2717-2728.
[22]
刘震, 朱茂林, 刘惠民, 等. 花岗岩风化壳储层形成机理及分布特征: 以东营凹陷北带西段为例[J]. 石油学报, 2021, 42(2): 163-175.
[23]
闫林辉, 常毓文, 田中元, 等. 乍得Bongor盆地基岩潜山储集空间特征及影响因素[J]. 东北石油大学学报, 2019, 43(2): 59-67, 8-9.
[24]
余朝华, 杜业波, 肖坤叶, 等. 乍得Bongor盆地基岩潜山储层特征与影响因素研究[J]. 岩石学报, 2019, 35(4): 1279-1290.
[25]
陈更新, 王建功, 杜斌山, 等. 柴达木盆地尖北地区裂缝性基岩气藏储层特征[J]. 岩性油气藏, 2020, 32(4): 36-47.
[26]
黄成刚, 张小军, 胡贵, 等. 高原咸化湖盆基底储层特征与成藏主控因素: 以柴达木盆地东坪地区为例[J]. 石油学报, 2020, 41(2): 179-196.
[27]
杜晓峰, 刘晓健, 张新涛, 等. 渤海海域太古宇变质岩储层特征与形成控制因素[J]. 中国海上油气, 2021, 33(3): 15-27.
[28]
白连德, 邵明礼, 尹永康, 等. 松辽盆地中央古隆起带南部基岩储层特征及油气成藏模式[J]. 世界地质, 2021, 40(2): 364-374.
[29]
叶涛, 牛成民, 王清斌, 等. 渤海湾盆地大型基岩潜山储层特征及其控制因素: 以渤中19-6凝析气田为例[J]. 地质学报, 2021, 95(6): 1889-1902.
[30]
李欣, 谢庆宾, 牛花朋, 等. 阿尔金山前带东段基岩储层主要特征及评价[J]. 地球科学, 2020, 45(2): 617-633.
[31]
李丕龙, 姜在兴, 马在平. 东营凹陷储集体与油气分布[M]. 北京: 石油工业出版社, 2000: 1-148.
[32]
陈树光. 东营凹陷古近纪构造体制转换及其动力学背景分析[D]. 武汉: 中国地质大学(武汉), 2015: 1-115.
[33]
ZHU M L, LIU Z, LIU H M, et al. Structural division of granite weathering crusts and effective reservoir evaluation in the western segment of the northern belt of Dongying Sag, Bohai Bay Basin, NE China[J]. Marine and Petroleum Geology, 2020, 121: 104612. DOI: 10.1016/j.marpetgeo.2020.104612.
[34]
年涛, 姜在兴, 王贵文, 等. 渤海湾盆地东营凹陷始新统红层沉积再认识[J]. 沉积学报, 2023, 41(1): 150-169. DOI: 10.14027/j.issn.1000-0550.2021.086.
[35]
张鹏飞, 刘惠民, 王永诗, 等. 济阳坳陷太古宇潜山储集体发育模式[J]. 中国石油大学学报(自然科学版), 2017, 41(6): 20-29.
[36]
徐国盛, 陈飞, 周兴怀, 等. 蓬莱9-1 构造花岗岩古潜山大型油气田的成藏过程[J]. 成都理工大学学报(自然科学版), 2016, 43(2): 153-162.
[37]
陈国成, 陈华靖, 田晓平. 渤海PL油田花岗岩潜山储层发育特征及控制因素[J]. 海洋地质前沿, 2016, 32(2): 14-19, 65.
[38]
叶涛, 韦阿娟, 鲁凤婷, 等. 渤海海域西南部前新生代反转构造特征及成因机制[J]. 地质学报, 2019, 93(2): 317-328.
[39]
叶涛, 韦阿娟, 曾金昌, 等. 渤海湾盆地中生代构造差异演化与潜山油气差异富集[J]. 地质科学, 2019, 54(4): 1135-1154.
[40]
葛志丹, 王兴志, 朱萌, 等. 东营凹陷太古宇岩浆岩储层特征研究[J]. 岩性油气藏, 2011, 23(4): 48-52.
[41]
李建平, 周心怀, 王清斌. 表生喀斯特作用对蓬莱花岗岩潜山油田风化壳储层发育的控制作用[J]. 成都理工大学学报(自然科学版), 2014, 41(5): 556-566.

基金

科学技术部国家重大科技专项“岩性油气藏成藏动力、临界条件与分布模式(2011ZX05001-001-004)”

评论

PDF(4172 KB)

Accesses

Citation

Detail

段落导航
相关文章

/