
不同尺度的土壤含水量主被动微波联合反演方法研究
刘奇鑫, 顾行发, 王春梅, 杨健, 占玉林
不同尺度的土壤含水量主被动微波联合反演方法研究
Soil moisture retrieval on both active and passive microwave data scales
土壤含水量是水文、农业和气象等领域的关键参数,而微波遥感是目前监测土壤含水量最有效的手段之一。本文利用主动微波与被动微波数据,结合其他多源遥感数据,运用随机森林算法分别在主动微波数据分辨率尺度和被动微波数据分辨率尺度下完成主被动微波数据的土壤含水量联合反演。首先对被动微波尺度的地表覆盖类型与归一化植被指数(NDVI)参数进行空间分辨率优化,再利用回归ReliefF方法对两种尺度所用的输入变量的重要性进行评估,并对输入变量进行优选,最后对比主被动微波数据土壤含水量联合反演和单独利用主动/被动微波数据进行反演的精度,分析主被动微波联合反演方法的有效性。结果表明:在主动微波尺度,主被动微波联合反演的精度相比单独利用主动微波数据反演的精度有所提升,相关系数r由0.691升至0.744,RMSE由0.084 8 cm3/cm3降至0.079 6 cm3/cm3;在被动微波尺度,主被动微波联合反演的精度反而比单独利用被动微波数据反演的精度更低,相关系数r由0.944变为0.939,RMSE由0.043 5 cm3/cm3变为0.045 1 cm3/cm3。因此在主动微波尺度更适合进行主被动微波的联合反演。
Soil moisture is a critical parameter in the field of hydrology, agriculture and meteorology, and microwave remote sensing is one of the most effective methods for soil moisture detection. This study uses active and passive microwave data and other multi-source remote sensing data and applies Random forest algorithm to perform soil moisture retrieval on both active and passive microwave data scales. First, on passive microwave data scale, the parameters for land cover and normalized difference vegetation index (NDVI) are spatially optimized. Second, ReliefF method is used for evaluating the importance of input parameters and parameter selection. Last, results by using active and passive microwave data jointly or separately are compared to assess the retrial accuracy and effectiveness of the former method. It was found that on the scale of active microwave data, the joint retrieval method yielded results with higher accuracy (r=0.691, RMSE=0.0796) compared to using only active microwave data (r=0.744, RMSE=0.0848); however, on the scale of passive microwave data, the opposite was true (r=0.939, RMSE=0.0451 using joint data; r=0.944, RMSE=0.0435 using only passive microwave data). The joint retrieval method proved to be applicable on the scale of active microwave data.
土壤含水量 / 微波遥感 / 联合反演 / 随机森林 / 空间优化 / 重要性评估
soil moisture / microwave remote sensing / joint retrieval / random forest / spatial optimization / importance evaluation
P642.115;P627;X87
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
逄春浩. 土壤水分测定方法的新进展: TDR测定仪[J]. 干旱区资源与环境, 1994, 8(2): 69-76.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
雷志斌, 孟庆岩, 田淑芳, 等. 基于GF-3和Landsat8遥感数据的土壤水分反演研究[J]. 地球信息科学学报, 2019, 21(12): 1965-1976.
|
[11] |
|
[12] |
|
[13] |
陈书林, 刘元波, 温作民. 卫星遥感反演土壤水分研究综述[J]. 地球科学进展, 2012, 27(11): 1192-1203.
|
[14] |
|
[15] |
张滢, 丁建丽, 周鹏. 干旱区土壤水分微波遥感反演算法综述[J]. 干旱区地理, 2011, 34(4): 671-678.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
赵天杰, 张立新, 蒋玲梅, 等. 利用主被动微波数据联合反演土壤水分[J]. 地球科学进展, 2009, 24(7): 769-775.
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
唐豪, 王晓云, 陈伏龙, 等. 基于ERA5-Land数据集的玛纳斯河径流模拟研究[J]. 地学前缘, 2022, 29(3): 271-283.
|
[36] |
|
[37] |
|
[38] |
王思楠. 融合多源遥感和机器学习算法的土壤水分反演和干旱监测及植被响应研究[D]. 呼和浩特: 内蒙古农业大学, 2022.
|
[39] |
|
[40] |
梁鸿, 魏倩, 孙运雷. 基于改进的RReliefF算法的超参数重要性分析[J]. 计算机与数字工程, 2020, 48(8): 1840-1845, 2045.
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
宋沛林. 基于AMSR被动微波辐射计的地表土壤含水量估算方法改进及应用研究[D]. 杭州: 浙江大学, 2019.
|
[46] |
李占杰, 陈基培, 刘艳民, 等. 土壤水分遥感反演研究进展[J]. 北京师范大学学报(自然科学版), 2020, 56(3): 474-481.
|
/
〈 |
|
〉 |