大陆下地壳

张艳斌, 翟明国, 周艳艳, 周李岗

PDF(4524 KB)
PDF(4524 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 28-45. DOI: 10.13745/j.esf.sf.2023.12.27
地球动力学与深部过程

大陆下地壳

作者信息 +

The continental lower crust

Author information +
History +

摘要

大陆下地壳是连接岩石圈地幔和上地壳的“纽带”,是地壳与地幔交换最活跃的部位。上地幔与下地壳的部分熔融及下地壳一些岩石的拆沉还可直接导致壳-幔物质的交换、循环与重组。换言之,下地壳是壳-幔作用的一个极其重要的场所,底垫、拆沉、深熔、高级变质和其他作用都在下地壳中发生和实现。然而,下地壳是以往研究地球深部和浅部关系时被“跳”过去的部位,没有得到足够的重视。克拉通化定义为大陆原来混沌的原地壳分异并形成稳定的上地壳和下地壳,并由此构建了稳定的壳-幔结构,这种空前的稳定关系从形成起一直维持到现在,是大陆演化、洋-陆与壳-幔相互作用的基础。在板块边界的造山过程中,如洋-陆的俯冲碰撞特别是陆-陆碰撞,可以形成不同大陆地块的陆壳叠置、加厚、垮塌、拆沉、底垫和重新稳定,在造山带根部形成新的下地壳,即造山带型下地壳。本文重点讨论了克拉通型下地壳演化过程,强调了其动力学意义及其在大陆动力学研究中的重要地位,建议在深地研究和学科布局中给与充分重视。

Abstract

The lower crust, linking the lithospheric mantle and the upper crust, is the most active place of energy exchange between the crust and the mantle; and partial melting of the lower crust and upper mantle, and delamination of the lower crust can directly lead to crust/mantle material exchange, re-cycling, recombination. In other words, the lower crust is one of the most important site for mantle-crust interactions where magma underplating, anatexis, delamination, high-grade metamorphism, and other processes take place. However, the lower crust has been largely overlooked by previous studies of the deep Earth. In this paper, the lower crustal profile of the North China Craton is described in detail. On this basis, the craton-type lower crust processes are discussed, and their dynamic significance and important position in the study of continental dynamics are emphasized. Cratonization is the transition of the formerly chaotic crust of the continent to stable upper and lower crust, and thus establishing a stable lithosphere. This unprecedented stable relationship between the crust and the mantle has been maintained from the beginning to the present, and is the basis for continental evolution, ocean-continent interaction, and crust-mantle interaction. The cratonic crust is not static after formation, and the continental boundaries can change during ocean-continental subduction-collisions. Especially during continent-continent collisions, the continental crust that can form different continental blocks is superimposed, thickened, collapsed, disassembled, underpinned and re-stabilized. At the root of the continental orogenic belt, a new lower crust is formed to become the lower crust of the orogenic belt type. We, therefore, suggest in this paper that the craton-type lower crust processes should receive full attention in the study of the deep Earth as well as in the designing of geoscience curricula.

关键词

大陆下地壳 / 地质过程 / 壳幔作用 / 克拉通 / 造山带 / 地球动力学

Key words

continental lower crust / geological process / interaction between crust and mantle / craton / orogeny / geodynamics

中图分类号

P313.2;P541

引用本文

导出引用
张艳斌 , 翟明国 , 周艳艳 , . 大陆下地壳. 地学前缘. 2024, 31(1): 28-45 https://doi.org/10.13745/j.esf.sf.2023.12.27
Yanbin ZHANG, Mingguo ZHAI, Yanyan ZHOU, et al. The continental lower crust[J]. Earth Science Frontiers. 2024, 31(1): 28-45 https://doi.org/10.13745/j.esf.sf.2023.12.27

参考文献

[1]
WINDLEY B F. Overview and history of investigation of early Earth history[M]//VAN KRANENDONK M J, SMITH R H, BENNETT V C. Earth's oldest rocks. Amsterdam: Elsevier, 2007: 3-7.
[2]
翟明国. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 2011, 41(8): 1037-1046.
[3]
翟明国, 张艳斌, 李秋立, 等. 克拉通、下地壳与大陆岩石圈: 庆贺沈其韩先生百年华诞[J]. 岩石学报, 2021, 37(1): 1-23.
[4]
ROGERS J J W, SANTOSH M T. Tectonics and surface effects of the Supercontinent Columbia[J]. Gondwana Research, 2009, 15: 373-380.
[5]
朱日祥, 徐义刚. 西太平洋板块俯冲与华北克拉通破坏[J]. 中国科学: 地球科学, 2019, 49(9): 1346-1356.
[6]
吴福元, 徐义刚, 朱日祥, 等. 克拉通岩石圈减薄与破坏[J]. 中国科学: 地球科学, 2014, 44 (11): 2358-2372.
[7]
BOHLEN S R, MERZGER K. Origin of granulite terrenes and the formation of the lowermost continental crust[J]. Science, 1989, 244: 326-329.
[8]
钱祥麟, 崔文元, 王时麒. 内蒙冀东太古界麻粒岩相带的演化[G]//地质论文集. 北京: 北京大学出版社, 1985: 20-29.
[9]
赵宗溥等. 中朝准地台前寒武纪地壳演化[M]. 北京: 科学出版社, 1993: 389-439.
[10]
沈其韩, 徐惠芬, 张宗清, 等. 中国前寒武纪麻粒岩[M]. 北京: 地质出版社, 1992: 221-223.
[11]
MA X Y. Geological observation for southern and northern parts along the geological profile of Xiangshui, Jiangsu-Mandula, Inner Mongolia[J]. Journal of Earth Science, 1989, 14: 1-6.
[12]
GAO S, RUDNICK R L, YUAN H L, et al. Recycling lower continental crust in the North China Craton[J]. Nature, 2004, 432: 892-897.
[13]
KERN H, Gao S, LIU Q S L. 1996. Seismic properties and densities of middle and lower crustal rocks exposed along the North China geoscience transect[J]. Earth and Planetary Science Letters, 1996, 139: 439-455.
[14]
RUDNICK R L, FOUTAIN D M. Nature and composition of the continental crust: a lower crustal perspective[J]. Reviews of Geophysics, 1995, 33: 267-309.
[15]
PERCIVAL J A, FOUTAIN D M, SALIBURY M H. Exposed crustal cross-sections as windows of the lower crust[M]//FOUTAIN D M, ARCILUS R, KAY W A. Continental lower crust. New York: Elsevier, 1992: 317-319.
[16]
CHRISTENSEN N I, MOONEY W D. Seismic velocity structure and composition of the continental crust: a global view[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 9761-9788.
[17]
WEAVER B L, TARNEY J. Elemental depletion in Archaean granilite facies rocks[M]//ATHERTON M P, GRIBBLE C D. Migmatite, melting and metamorphism. Nantwich, Cheshire: Shiva Publication, 1983: 250-263.
[18]
FOUNTAIN D M, PERCIVAL J A, SALIBURY M H. Exposed cross-sections of the continental crust-synopsis[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 653-662.
[19]
WEBER W, MEGER K. An oblique cross section of Archaean continental crust at the northwestern margin of Superior Province, Manitoba, Canada[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 327-341.
[20]
NEWTON R C. The late Archaean high-grade terrene of south India and the deep structure of the Dharwar craton[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 305-326.
[21]
HOLBROOK W S, MOONEY W D, CHRISTENSEN N I. The seismic velocity structure of the deep continental crust[M]//FOUTAIN D M, ARCILUS R, KAY W A. Continental lower crust. New York: Elsevier, 1992: 1-43.
[22]
BOHLERN S R. Pressure-temperature-time paths and a tectonic model for the evolution of granulites[J]. Journal of Geology, 1987, 95: 617-632.
[23]
RUDNICK R L, PRESPER T. Geochemistry of intermediate- to high-pressure granulites[M]//VIELZEUF D, VIDAL P. Granulites and crustal evolution. Amsterdam: Kluwer Academic Publishers, 1990: 523-550.
[24]
NANCE R D, MURPHY J B, SANTOSH M. The supercontinent cycle: a retrospective essay[J]. Gondwana Research, 2013, 25(1). http://dx.doi.org/10.1016/j.gr.2012.12.026.
[25]
WAN Y S, LIU D Y, XIE H Q, et al. Formation ages and environments of Early Precambrian banded iron formation in the North China Carton[M]//ZHAI M G, ZHAO Y, ZHAO T. Main tectonic events and metallogeny of the North China Craton. Singapore: Springer, 2016: 65-83.
[26]
GENG Y S, DU L L, REN LD. Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes[J]. Gondwana Research, 2012, 21: 517-529.
[27]
ARTEMIEVA I, MOONEY W D. Thermal thickness and evolution of Precambrian lithosphere: a global study[J]. Journal of Geophysical Research: Solid Earth, 2001, 106: 16387-16414.
[28]
MOYEN J F, VAN HUNEN J. Short-termepisodicity of Archean plate tectonics[J]. Geology, 2012, 40: 451-454.
[29]
翟明国, 郭敬辉, 阎月华, 等. 太古宙克拉通型下地壳剖面: 华北怀安-丰镇-尚义的麻粒岩-角闪岩系[J]. 岩石学报, 1996, 12(2): 222-238.
[30]
CARSWELL D A. Eclogites and eclogite facies, definitions and classifications[M]//CARSWELL D A. Eclogite facies rocks. New York: Blackie, 1990: 1-13.
[31]
翟明国, 郭敬辉, 阎月华, 等. 中国华北太古宙高压基性麻粒岩的发现及其初步研究[J]. 中国科学: B辑, 1992, 12: 1325-1330.
[32]
阎月华. 大同孤山含石榴石麻粒岩的成因讨论[M]//钱祥麟, 王仁民.华北北部麻粒岩带地质演化. 北京: 地震出版社, 1994: 199-209.
[33]
刘宇光. 冀西北及相邻地区的早前寒武纪地质及地壳演化[D]. 北京: 中国科学院地质研究所, 1988.
[34]
PERCIVAL J A. A field guide to the Kapuskasing uplift: a cross section through the Archaean superior province[M]//SALIBURY M H, FOUNTAIN D M. Exposed cross-section of the continental crust. London: Kluwer Academic Publishers, 1990: 227-286.
[35]
ATAL B S, BHALLA N S, LALL Y, et al. Radioactive elemental distribution in the granulite terrains and Dharwar schist belts of Peninsular India[J]. Developments in Precambrian Geology, 1978, 5: 205-220.
[36]
张友南, 孙君秀. 华北地壳岩石波速类型及其地质意义[J]. 地震地质, 1998, 20(1): 73-81.
[37]
祝治平, 张先康, 张建狮, 等. 北京-怀来-丰镇剖面地壳上地幔构造与速度结构图[J]. 地震学报, 1997, 19: 99-505.
[38]
ZHAI M G, GUO J H, LIU W J. An oblique cross-section of Precambrian lower crust in the North China Craton[J]. Physics and Chemistry of the Earth, 2001, 26: 781-792.
[39]
GOU L L, ZHAI M G, ZHANG C L, et al. Ultrahigh temperature metamorphism and isobaric cooling of Neoarchean ultramafic-mafic granulites in the southern granulite terrain, India: phase equilibrium modelling and SHRIMP zircon U-Pb dating[J]. Journal of Metamorphic Geology, 2022, 40(5). DOI: 10.1111/jmg.12654.
[40]
赵磊, 张儒诚, 孙伟清, 等. 华北克拉通东部胶北地体早前寒武纪表壳岩系: 研究进展与综述[J]. 岩石学报, 2023, 39 (8): 2211-2237.
[41]
ZOU Y, LI Q L, CHU X. Older orogens cooled slower: new constraints on Orosirian tectonics from garnet difusion modeling of metamorphic timescales, Jiaobei terrain, North China Craton[J]. Contributions to Mineralogy and Petrology, 2021, 176: 91.
[42]
翟明国. 华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题[J]. 岩石学报, 2009, 25: 1753-1771.
[43]
ZHOU L G, ZHAI M G, LU J S, et al. Paleoproterozoic metamorphism of high-grade granulite facies rocks in the North China Craton: study advances, questions and new issues[J]. Precambrian Research, 2017, 303: 520-547.
[44]
侯泉林, 郭谦谦, 陈艺超, 等. 山脉与造山带及有关问题讨论[J]. 岩石学报, 2021, 37(8): 2287-2302.
[45]
LIN S F. Synchronous vertical and horizontal tectonism in the Neoarchean: kinematic evidence from a synclinal keel in the northwestern Superior Craton, Canada[J]. Precambrian Research, 2005, 139: 181-194.
[46]
LIN S F, PARKS J, HEAMAN L M, et al. Diapirism and sagduction as a mechanism for deposition and burial of “Timiskaming-type” sedimentary sequences, Superior Province: evidence from detrital zircon geochronology and implications for the Borden Lake conglomerate in the exposed middle to lower crust in the Kapuskasing uplift[J]. Precambrian Research, 2013, 238: 148-157.
[47]
FOUNTAIN D M, SALISBURY M H. Exposed cross-sections through the continental crust: implications for crustal structure, petrology and evolution[J]. Earth and Planetary Science Letters, 1981, 56: 263-277.
[48]
WANG E, BURCHFIEL B C. 1997. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailao Shan shear zone and the eastern Himalayan syntaxis[J]. International Geology Review, 1997, 39 (3): 191-219.
[49]
WANG Q, ZHANG P Z, FREYMUELLER J T, et al. Present-day crustal deformation in China constrained by Global Positioning System measurement[J]. Science, 2001, 294 (5542): 574-577.
[50]
ROYDEN L H, BURCHFIEL B C, KING R W, et al. Surface deformation and lower crustal flow in eastern Tibet[J]. Science, 1997, 276: 788-790.
[51]
CLARK M K, ROYDEN L H. Topographic ooze: building the eastern margin of Tibet by lower crustal flow[J]. Geology, 2000, 28 (8): 703-706.
[52]
陈小宇, 刘俊来, 翁少腾. 青藏高原东南缘晚渐新世-早中新世中下地壳流动: 滇西瑶山与玉龙变质杂岩构造解析[J]. 岩石学报, 2020, 36 (8): 2558-2570.
[53]
王椿镛, 王溪莉, 苏伟, 等. 青藏高原东缘下地壳流动的地震学证据[J]. 四川地震, 2006, 4: 1-4.
[54]
翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动: 前沿热点介绍与展望[J]. 岩石学报, 2020, 8(1): 2249-2275
[55]
翟明国. 新太古代全球克拉通事件与太古宙-元古宙分界的地质涵义[J]. 大地构造与成矿, 2006, 30(4): 419-421.
[56]
CONDIE K C. Precambrian superplume event[M]//ERIKSSON P G, ALTERMANN W, NELSON D R, et al. The Precambrian Earth tempos and events. Amsterdam: Elsevier, 2004: 163-172.
[57]
CONDIE K C, KRÖNER A. When did plate tectonics begin? Evidence from the geologic record[J]. Geological Society of America, Special Paper, 2008, 440: 281-294.
[58]
TURET J. Fluid inclusions in high grade metamorphic rocks[M]//HOLIISTER L S, CRAWFORD M L. Short course in fluid inclusions: application to petrology. Waterloo: Mineralogyical Association of Canada, 1981: 182-208.
[59]
TURET J. DIETVORST P. Fluid inclusions in high grade anatectic metamorphites[M]//HOLIISTER L S, CRAWFORD M L. Short course in fluid inclusions: application to geology. London: Mineralogical Association, 1983: 635-649.
[60]
梅冥相. 冥古宙的地层学属性: 了解地球形成初期古地理背景和演变历史的重要线索[J]. 古地理学报, 2016, 18(4): 513-524.
[61]
LIU L. The inception of the oceans and CO2: atmosphere in the early history of the Earth[J]. Earth and Planetary Science Letters, 2004, 227: 179-184.
[62]
沈昆, 张泽明, 孙晓明, 等. 超高压变质流体的组成与演化: 中国大陆科学钻探工程主孔岩心的流体包裹体研究[J]. 岩石学报, 2005, 21(2): 489-504.
[63]
LU J S, ZHAI M G, ZHAO L. P-T-t evolution of Neoarchaean to Paleoproterozoic pelitic granulites from the Jidong terrane, eastern North China Craton[J]. Precambrian Research, 2017, 290: 1-15
[64]
魏春景. 冀东地区新太古代麻粒岩相变质作用及其大地构造意义[J]. 岩石学报, 2018, 34(4): 895-912.
[65]
LIU T, WEI C J. Metamorphic p-T paths and zircon U-Pb ages of Archean ultrahigh temperature paragranulites from the Qian’an gneiss dome, East Hebei Terrane, North China Craton[J]. Journal of Metamorphic Geology, 2020, 38(4): 329-356.
[66]
崔润泽, 魏春景, 段站站. 华北克拉通清原地体新太古代和古元古代两期麻粒岩相变质作用[J]. 岩石学报, 2023, 39(8): 2257-2278.
[67]
FROST B R, FROST C D. CO2, melts, and granulite metamorphism[J]. Nature, 1987, 327: 503-506.
[68]
HARLEY S L. Refining the p-T records of UHT crustal metamorphism[J]. Journal of Metamorphic Geology, 2008, 26(2): 125-154.
[69]
DHARMAPRIYA P L. MALAVIARACHCHI S R K, GALLI A, et al. p-T evolution of a spinel + quartz bearing khondalite from the Highland Complex, Sri Lanka: implications for non-UHT metamorphism[J]. Journal of Asian Earth Sciences, 2014, 95: 99-113.
[70]
GUO J H, PENG P, CHEN Y, et al. UHT sapphirine granulite metamorphism at 1.93-1.92 Ga caused by gabbronorite intrusions: implications for tectonic evolution of the northern margin of the North China Craton[J]. Precambrian Research, 2012, 222/223: 124-142.
[71]
WU J L, ZHANG H F, ZHAI M G, et al. Pelitic high-pressure granulite from the Huai’an Complex, North China Craton: metamorphic p-T evolution and geological implications[J]. Precambrian Research, 2016, 278: 323-336.
[72]
YANG Q Y, SANTOSH M, WADA H. Graphite mineralization in Paleoproterozoic khondalites of the North China Craton: a carbon isotope study[J]. Precambrian Research, 2014, 255: 641-652.
[73]
YIN C Q, ZHAO G C, SUN M, et al. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex: constraints on the evolution of the Khondalite Belt in the western block of the North China Craton[J]. Precambrian Research, 2009, 174: 78-94.
[74]
ZHAI M G, GUO J H, LI Y G, et al. Two linear granite belts in the central-western North China Craton and their implication for Late Neoarchaean-Palaeoproterozoic continental evolution[J]. Precambrian Research, 2003, 127: 267-283.
[75]
张喜松. 下地壳超高温深熔和-2.5 Ga的克拉通化[D]. 北京: 中国科学院地质与地球物理研究所, 2023.
[76]
翟明国, 李永刚, 郭敬辉, 等. 晋冀内蒙交界地区麻粒岩地体中两条花岗岩带及其对早前寒武纪地壳生长的意义[J]. 岩石学报, 1996, 12(2): 299-314.
[77]
HE H L, WANG Y Q, BAO Z A, et al. Role of magma injection and mixing in the formation of chromitite in Archean anorthosites: evidence from the Sittampundi Complex, southern India[J]. Precambrian Research, 2020, 350: 105914.
[78]
BRANDT S, RAITH M M, SCHENK V, et al. Crustal evolution of the southern Granulite Terrane, South India: new geochronological and geochemical data for felsic orthogneisses and granites[J]. Precambrian Research, 2014, 246: 91-122.
[79]
HE H L, WANG Y Q, GEORGE, P M, et al. Formation of -2.5 Ga Sittampundi anorthosite complex in southern India: implications to lower crustal stabilization of Dharwar Craton[J]. Precambrian Research, 2021, Lithos, 380/381: 105836.
[80]
翟明国, 樊棋诚, 张宏福, 等. 华北东部岩石圈减薄作用中的下地壳过程: 岩浆底侵、置换与拆沉作用[J]. 岩石学报, 2005, 21(6): 1509-1526.
[81]
FAN W M, MENZIES M A. Destruction of aged lower lithosphere and asthenosphere mantle beneath eastern China[J]. Geotectonica et Metallogenia, 1992, 16: 171-179.
[82]
GAO S, RUDNICK R L, CARLSON R W. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton[J]. Earth and Planetary Science Letters, 2002, 198: 307-322.
[83]
ZHANG H F, MIN S, ZHOU X H et al. Geochemical constraints on the origin of Mesozoic alkaline intrusive complexes from the North China Craton and tectonic implications[J]. Lithos, 2005, 81: 297-317.
[84]
樊祺诚, 张宏福, 隋建立, 等. 岩浆底侵作用与汉诺坝现今壳-幔边界组成[J]. 中国科学D辑: 地球科学, 2005, 35: 1-14.
[85]
钱祥麟. 早期大陆地壳研究的意义和问题[M]//钱祥麟, 王仁民. 华北北部麻粒岩相带地质演化. 北京: 地震出版社, 1994: 1-6.

基金

国家自然科学基金项目(42220104008)

评论

PDF(4524 KB)

Accesses

Citation

Detail

段落导航
相关文章

/