华北克拉通新太古代晚期岩浆作用:对构造体制和克拉通化的启示

万渝生, 董春艳, 颉颃强, 李鹏川, 刘守偈, 李源, 王宇晴, 王堃力, 刘敦一

PDF(10855 KB)
PDF(10855 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 77-94. DOI: 10.13745/j.esf.sf.2023.12.21
华北克拉通演化及其效应

华北克拉通新太古代晚期岩浆作用:对构造体制和克拉通化的启示

作者信息 +

Neoarchean magmatism in the North China Craton: Implication for tectonic regimes and cratonization

Author information +
History +

摘要

在对华北克拉通太古宙基底作简要介绍的基础上,本文总结了华北克拉通新太古代晚期(主要为2.55~2.5 Ga期间)岩浆岩的锆石年龄分布模式、地球化学和Nd-Hf-O同位素组成特征。华北克拉通新太古代晚期变质基底的主要特征如下:(1)新太古代晚期岩石在华北克拉通广泛分布,但许多地区都存在中太古代晚期—新太古代早期地质记录。(2)岩浆锆石年龄主要变化于2.55~2.5 Ga,年龄峰值约为2.52 Ga。(3)与新太古代早期以前(>2.6 Ga)的英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)相比,新太古代晚期英云闪长岩和花岗闪长岩比例明显增大。富钾花岗岩、闪长-辉长岩(包括闪长岩、辉长岩及两者之间过渡岩石)、赞岐岩(Sanukite,主体为富镁闪长岩)分布范围和规模也明显增大。大规模富钾花岗岩主要分布于华北克拉通东部,构成新太古代晚期双岩浆岩带的富钾花岗岩带。(4)在新太古代晚期变质基底分布区,几乎都有变质表壳岩存在。它们以较小规模存在于TTG和富钾花岗岩中。岩石类型包括变玄武质岩石、变质安山质-英安质火山岩/火山碎屑岩和变质碎屑沉积岩。一些地区存在变质超基性岩。(5)总体上,新太古代晚期地质事件存在如下演化规律:首先是表壳岩形成,然后是TTG侵入,最后是变质变形和富钾花岗岩形成。2.6~2.55 Ga为华北克拉通岩浆构造的“寂静期”。(6)新太古代晚期TTG岩石的Sr/Y和La/Yb比值存在很大变化,中-高压TTG岩石大量形成表明新太古代晚期陆壳规模、厚度发生了明显增大。至少部分富钾花岗岩在形成过程中有沉积物参与。(7)不同类型TTG岩石具有类似的全岩Nd同位素和岩浆锆石Hf同位素组成,Nd-Hf同位素亏损地幔模式年龄主要分布在3.0~2.5 Ga,与中太古代晚期—新太古代早期岩石的模式年龄相近或稍偏年轻。富钾花岗岩Nd-Hf同位素组成特征受物源区早期形成演化历史制约。岩浆锆石O同位素组成与全球太古宙岩浆锆石类似,但显示更大的变化范围。结合其他研究,上述证据表明:(1)中太古代晚期—新太古代早期是华北克拉通陆壳增生最重要时期,这与全球其他许多克拉通类似,不同之处在于华北克拉通遭受了新太古代晚期构造岩浆热事件强烈改造;(2)在华北克拉通,类似于现代板块运动的构造体制在新太古代晚期开始启动;(3)规模最大的BIF(条带状铁建造)沿华北克拉通东部古老陆块西缘的双岩浆岩带分布,鞍本和冀东之间、冀东和鲁西之间是BIF找矿重要靶区;(4)华北克拉通在新太古代晚期完成初始克拉通化。

Abstract

Following a brief introduction to the Archean basement of the North China Craton (NCC), this paper summarizes the age distribution pattern, geochemistry and Nd-Hf-O isotopic compositions of late Neoarchean (mainly 2.55-2.5 Ga) magmatic rocks in the NCC. The late Neoarchean basement has the following features: 1) Late Neoarchean rocks are widespread while late Mesoarchean-early Neoarchean strata occur in many areas. 2) The magmatic zircon ages are mainly between 2.55-2.5 Ga and has a peak around 2.52 Ga. 3) Compared with pre-early Neoarchean (> 2.6 Ga) TTG (tonalite, trondhjemite, granodiorite), late Neoarchean tonalite and granodiorite are much more abundant, so are potassic granite, diorite-gabbro and sanukitoid with increased distribution range and scale. Voluminous potassic granites are mainly distributed in the east, forming a potassic granite belt-one of the double magmatic rock belts of the late Neoarchean (another is a TTG belt in the west). 4) Late Neoarchean supracrustal rocks are present in almost every area of basement outcrop, but occurring on a small scale when associated with TTG and potassic granite. The supracrustal rock types include metabasalt, meta-andesite, metadacite and clastic metasedimentary rocks, with meta-ultramafic rocks occurring in some areas. 5) In general, geological evolution of the late Neoarchean basement rocks began with supracrustal rock formation, then TTG intrusion, followed by metamorphism, deformation and emplacement of crust-derived potassic granite. The 2.6-2.55 Ga interval was a “quiet period” of magmatic and tectonothermal activity. 6) The late Neoarchean TTG rocks show large variations of Sr/Y and La/Yb ratios, consistent with medium-high formation pressures; their high abundances indicate significant continental crustal thickening in the late Neoarchean. Potassic granites were mostly derived from re-working of continental crust, with some, at least, involving sedimentary rocks. 7) All TTG rock types have similar whole-rock Nd and magmatic zircon Hf isotopic compositions, and the Nd-Hf isotope depleted mantle model ages are mainly between 3.0-2.5 Ga, similar to or slightly younger than that of late Mesoarchean-early Neoarchean rocks. The Nd-Hf isotopic composition of potassic granites is mostly constrained by the formation and evolutionary history of the source region on early Earth. Magmatic zircon has similar but more variable O isotopic composition compared to Archean magmatic zircon worldwide. Combined with results from other studies we arrive at the following conclusions: i) Similar to many other cratons, the late Mesoarchean-early Neoarchean was the most important period of rapid production of continental crust in the North China Craton, however, the NCC underwent strong magmatic and tectonothermal modification during the late Neoarchean. ii) “Modern-style” plate tectonic regimes began to form in the late Neoarchean in the NCC. iii) BIFs (banded iron formations) are mostly distributed along the double magmatic rock belts along the western margin of the Eastern Ancient Block of the NCC, thus the important exploration targets for BIF-hosted Fe resource should be between Anshan-Benxi and eastern Hebei and between eastern Hebei and western Shandong. iv) The initial cratonization of the NCC had completed by the end of the late Neoarchean.

关键词

华北克拉通 / 新太古代晚期 / 岩浆作用 / Nd-Hf-O同位素 / 构造体制

Key words

North China Craton / late Neoarchean / magmatism / Nd-Hf-O isotopes / tectonic regime

中图分类号

P588.1;P597;P54

引用本文

导出引用
万渝生 , 董春艳 , 颉颃强 , . 华北克拉通新太古代晚期岩浆作用:对构造体制和克拉通化的启示. 地学前缘. 2024, 31(1): 77-94 https://doi.org/10.13745/j.esf.sf.2023.12.21
Yusheng WAN, Chunyan DONG, Hangqiang XIE, et al. Neoarchean magmatism in the North China Craton: Implication for tectonic regimes and cratonization[J]. Earth Science Frontiers. 2024, 31(1): 77-94 https://doi.org/10.13745/j.esf.sf.2023.12.21

参考文献

[1]
CONDIE K C. Episodic continental growth models: afterthoughts and extensions[J]. Tectonophysics, 2000, 322(1): 153-162.
[2]
CONDIE K C, BELOUSOVA E, GRIFFIN W L, et al. Granitoid events in space and time: constraints from igneous and detrital zircon age spectra[J]. Gondwana Research, 2009, 15(3/4): 228-242.
[3]
沈其韩, 耿元生, 宋彪, 等. 华北和扬子陆块及秦岭—大别造山带地表和深部太古宙基底的新信息[J]. 地质学报, 2005, 79(5): 616-627.
[4]
ZHAI M G, SANTOSH M. The early Precambrian odyssey of the North China Craton: a synoptic overview[J]. Gondwana Research, 2011, 20(1): 6-25.
[5]
ZHAO G C, ZHAI M G. Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications[J]. Gondwana Research, 2013, 23(4): 1207-1240.
[6]
WAN Y S, LIU D Y, DONG C Y, et al. Formation and evolution of Archean continental crust of the North China Craton[M]//ZHAI M G. Precambrian geology of China. Singapore: Springer, 2015: 59-136.
[7]
JAYANANDA M, MOYEN J F, MARTIN H, et al. Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar Craton, southern India: constraints from geochronology, Nd-Sr isotopes and wholerock geochemistry[J]. Precambrian Research, 2000, 99(3/4): 225-254.
[8]
DRÜPPEL K, MCCREADY A J, STUMPFL E F. High-K granites of the Rum Jungle Complex, N-Australia: insights into the Late Archean crustal evolution of the North Australian Craton[J]. Lithos, 2009, 111(3/4): 203-219.
[9]
CLARK C, COLLINS A S, TIMMS N E, et al. SHRIMP U-Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India[J]. Gondwana Research, 2009, 16(1): 27-36.
[10]
LIU D Y, NUTMAN A P, COMPSTON W, et al. Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean Craton[J]. Geology, 1992, 20(4): 339-342.
[11]
MA Q, XU Y G, HUANG X L, et al. Eoarchean to Paleoproterozoic crustal evolution in the North China Craton: evidence from U-Pb and Hf-O isotopes of zircons from deepcrustal xenoliths[J]. Geochimica et Cosmochimica Acta, 2020, 278: 94-109.
[12]
万渝生, 颉颃强, 王惠初, 等. 冀东地区-3.8 Ga TTG岩石发现[J]. 地质学报, 2021, 95(5): 1321-1333.
[13]
万渝生, 董春艳, 颉颃强, 等. 华北克拉通新太古代早期—中太古代晚期(2.6-3.0 Ga)巨量陆壳增生: 综述[J]. 地质力学学报, 2022, 28(5): 866-906.
[14]
万渝生, 颉颃强, 董春艳, 等. 华北克拉通太古宙构造热事件时代及演化: 综述[J]. 地球科学, 2020, 45(9): 3119-3160.
[15]
WAN Y S, DONG C Y, XIE H Q, et al. Hadean to early Mesoarchean rocks and zircons in the North China Craton: a review[J]. Earth-Science Reviews, 2023, 243: 104489.
[16]
MIDDLEMOST E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37: 215-224.
[17]
BARKER F. Trondhjemite: definition, environment and hypotheses of origin[M]//BARKER F. Trondhjemites, dacites, and related rocks. Amsterdam: Elsevier, 1979: 1-12.
[18]
BARKER F, ARTH J G. Generation of trondhjemitic-tonalitic liquids and Archean bimodal trondhjemite-basalt suites[J]. Geology, 1976, 4: 596-600.
[19]
MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids[J]. GSA Bulletin, 1989, 101: 635-643.
[20]
SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[C]// SAUNDERS A D, NORRY M J. Magmatism in the ocean basins. London: Geological Society of London, Special Publication, 1989: 313-345.
[21]
PEARCE J A. The role of sub-continental lithosphere in magma genesis at active continental margins[C]// HAWKESWORTH C J, NORRY M J. Continental basalts and mantle xenoliths. Cambridge: Shiva Publish Limited, 1983: 230-249.
[22]
MOYEN J F. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth[J]. Lithos, 2011, 123(1/2/3/4): 21-36.
[23]
WINTHER, T K, NEWTON, R C. Experimental melting of a hydrous low-K tholeiite: evidence on the origin of Archaean cratons[J]. Bulletin of the Geological Society of Denmark, 1991, 39: 213-228.
[24]
LIOU P, GOU J H. Generation of Archaean TTG gneisses through amphibole-dominated fractionation[J]. Journal of Geophysical Research: Solid Earth, 2019, 124: 3605-3619.
[25]
WAN Y S, MA M Z, DONG C Y, et al. Widespread late Neoarchean reworking of Meso- to Paleoarchean continental crust in the Anshan-Benxi area, North China Craton, as documented by U-Pb-Nd-Hf-O isotopes[J]. American Journal of Science, 2015, 315: 620-670.
[26]
VALLEY J W, LACKEY J S, CAVOSIE A J, et al. 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon[J]. Contributions to Mineralogy and Petrology, 2005, 150, 561-580.
[27]
WAN Y S, DONG C Y, LIU Y D, et al. Zircon ages and geochemistry of late Neoarchean syenogranites in the North China Craton: a review[J]. Precambrian Research, 2012, 222/223: 265-289.
[28]
LAURENT O, BJORNSEN J, WOTZLAW, J F, et al. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 2020, 13: 163-169.
[29]
LAURENT O, MARTIN H, MOYEN J F, et al. The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga[J]. Lithos, 2014, 205: 208-235.
[30]
PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983.
[31]
MOYEN J F, STEVENS G. Experimental constraints on TTG petrogenesis: implications for Archean geodynamics[C]// BENN K, MARESCHAL J C, Condie K C. Archean geodynamics and environments. Washington: AGU, 2006, 149-178.
[32]
XIONG X, KEPPLER H, AUDÉTAT A, et al. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis[J]. American Mineralogist, 2009, 94: 1175-1186.
[33]
WU F Y, ZHAO G C, WILDE S A, et al. Nd isotopic constraints on crustal formation in the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5): 523-545.
[34]
GENG Y S, DU L L, REN L D. Growth and reworking of the early Precambrian continental crust in the North China Craton: constraints from zircon Hf isotopes[J]. Gondwana Research, 2012, 21(2/3): 517-529.
[35]
万渝生. 太古宙早期陆核和新太古代陆壳巨量生长[M]//翟明国, 张连昌, 陈斌. 华北克拉通前寒武纪重大地质事件与成矿. 北京: 科学出版社, 2018: 39-55.
[36]
LIU F, GUO J H, LU X P, et al. Crustal growth at -2.5 Ga in the North China Craton: evidence from whole-rock Nd and zircon Hf isotopes in the Huai’an gneiss terrane[J]. Chinese Science Bulletin, 2009, 54(24): 4704-4713.
[37]
LIOU P, GUO J H, PENG P, et al. Crustal growth of the North China Craton at ca. 2.5 Ga[J]. Science Bulletin, 2022, 67: 1553-1555.
[38]
DIWU C R, SUN Y, GUO A L, et al. Crustal growth in the North China Craton at 2.5 Ga: evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng Complex[J]. Gondwana Research, 2011, 20: 149-170.
[39]
伍家善, 耿元生, 沈其韩, 等. 中朝古大陆太古宙地质特征及构造演化[M]. 北京: 地质出版社, 1998: 1-212.
[40]
LI Y L, ZHENG J P, XIAO W J, et al. Circa 2.5 Ga granitoids in the eastern North China craton: melting from ca. 2.7 Ga accretionary crust[J]. GSA Bulletin, 2020, 132(3/4): 817-834.
[41]
KEMP A I S, WILDE S A, HAWKESWORTH C J, et al. Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons[J]. Earth and Planetary Science Letters, 2010, 296(1/2): 45-56.
[42]
WAN Y S, LIU S J, SONG Z Y, et al. The complexities of Mesoarchean to late Paleoproterozoic magmatism and metamorphism in the Qixia area, eastern North China Craton: geology, geochemistry and SHRIMP U-Pb zircon dating[J]. American Journal of Science, 2021, 321: 1-82.
[43]
BAI W Q, DONG C Y, SONG Z Y, et al. Late Neoarchean granites in the Qixingtai region, western Shandong: further evidence for the recycling of early Neoarchean juvenile crust in the North China Craton[J]. Geological Journal, 2020, 55(9): 6462-6486.
[44]
李源, 颉颃强, 董春艳, 等. 鲁西沂山地区新太古代晚期高级深熔混合岩的源区特征[J]. 岩石学报, 2022, 38(3): 598-618.
[45]
LI Y, XIE H Q, DONG C Y, et al. Zircon evolution from migmatite to crustally-derived granite: a case study of late Neoarchean migmatite in the Yishan area, western Shandong, North China Craton[J]. Gandwana Research, 2022, 112: 82-104.
[46]
翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动: 前沿热点介绍与展望[J]. 岩石学报, 2020, 36: 2249-2275.
[47]
LI J H, KUSKY T M, HUANG X N. Archean podiform chromitites and mantle tectonites in ophiolitic mélange, North China Craton: a record of early oceanic mantle processes[J]. GSA Today, 2002, 12: 4-11.
[48]
GENG Y S, LIU F L, YANG C H. Magmatic event at the end of the Archean in eastern Hebei Province and its geological implication[J]. Acta Geologica Sinica (English Edition), 2006, 80: 819-833.
[49]
POLAT A, LI J, FRYER B, et al. Geochemical characteristics of the Neoarchean (2800-2700 Ma)Taishan greenstone belt, North China Craton: evidence for plume-craton interaction[J]. Chemical Geology, 2006, 230(1/2): 60-87.
[50]
JAHN B M, LIU D Y, WAN Y S, et al. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry[J]. American Journal of Science, 2008, 308: 232-269.
[51]
YANG J H, WU F Y, WILDE S A, et al. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd-Hf isotopic evidence[J]. Precambrian Research, 2008, 167: 125-149.
[52]
NUTMAN A P, WAN Y S, DU L L, et al. Multistage late Neoarchaean crustal evolution of the North China Craton, eastern Hebei[J]. Precambrian Research, 2011, 189: 43-65.
[53]
WANG W, LIU S W, SANTOSH M, et al. Neoarchean intraoceanic arc system in the Western Liaoning Province: implications for Early Precambrian crustal evolution in the Eastern Block of the North China Craton[J]. Earth-Science Reviews, 2015, 150: 329-364.
[54]
WANG C, SONG S, NIU Y, et al. TTG and potassic Granitoids in the eastern North China Craton: making Neoarchean upper continental crust during micro-continental collision and post-collisional extension[J]. Journal of Petrology, 2016, 57(9): 1775-1810.
[55]
WAN Y S, LIU S J, XIE H Q, et al. Formation and evolution of the Archean continental crust of China: a review[J]. China Geology, 2018, 1: 107-136.
[56]
SUN G Z, LIU S W, GAO L, et al. Origin of late Neoarchean granitoid diversity in the Western Shandong Province, North China Craton[J]. Precambrian Research, 2020, 339: 105620.
[57]
WANG C, SONG S G, SU L, et al. Crustal maturation and cratonization in response to Neoarchean continental collision: the Suizhong granitic belt, North China Craton[J]. Precambrian Research, 2022, 377: 106732.
[58]
ZHAO G C, SUN M, WILDE S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited[J]. Precambrian Research, 2005, 136: 177-202.
[59]
WAN Y S, LIU D Y, WANG S J, et al. Juvenile magmatism and crustal recycling at the end of Neoarchean in western Shandong Province, North China Craton: evidence from SHRIMP zircon dating[J]. American Journal of Science, 2010, 310: 1503-1552.
[60]
XIE H Q, WAN Y S, DONG C Y, et al. Zircon U-Pb-Hf isotopes and geochemistry of late Neoarchean granitoids in southwestern Liaoning Province, North China Craton: petrogenesis and tectonic implications[J]. Gondwana Research, 2019, 70: 171-200.
[61]
WAN Y S, LIU D Y, XIE H Q, et al. Formation ages and environments of early Precambrian banded iron formation in the North China Craton[M]//ZHAI M G. Main tectonic events and metallogeny of the North China Craton. Berlin: Springer, 2016: 65-83.
[62]
万渝生, 董春艳, 颉颃强, 等. 华北克拉通早前寒武纪条带状铁建造形成时代: SHRIMP 锆石U-Pb定年[J]. 地质学报, 2012, 86: 1447-1478.
[63]
张连昌, 翟明国, 万渝生, 等. 华北克拉通前寒武纪BIF铁矿研究: 进展和问题[J]. 岩石学报, 2012, 28: 3431-3445.
[64]
翟明国. 克拉通化与华北陆块的形成[J]. 中国科学: 地球科学, 2011, 41: 1037-1046.
[65]
翟明国, 张艳斌, 李秋立, 等. 克拉通下地壳与大陆岩石圈: 庆贺沈其韩先生百年华诞[J]. 岩石学报, 2021, 37: 1-23.

基金

国家自然科学联合基金项目(U2344210)
国家自然科学重点基金项目(41890834)
国家自然科学重点基金项目(42130311)
中国地质调查局地质调查项目(DD20221645)
中国地质调查局地质调查项目(DD20230209)

评论

PDF(10855 KB)

Accesses

Citation

Detail

段落导航
相关文章

/