基于DEW模型的地球深部流体组成与水岩相互作用计算方法综述

兰春元, 张立飞, 陶仁彪, 胡晗, 张丽娟, 王超

PDF(2082 KB)
PDF(2082 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 64-76. DOI: 10.13745/j.esf.sf.2023.12.20
地球动力学与深部过程

基于DEW模型的地球深部流体组成与水岩相互作用计算方法综述

作者信息 +

Calculation methods for fluid composition and water-rock interaction in the deep Earth based on DEW model—a review

Author information +
History +

摘要

水岩相互作用会导致流体中元素的价态、赋存形式等发生改变,进而对元素的富集成矿、循环通量等产生影响。由于地球深部样品与实验数据有限,建立和使用地球深部流体模型可以有效地增加人们对深部流体及水岩相互作用的认知。Deep Earth Water(DEW)模型是一种描述地球深部流体热力学性质的数据库,其可以与矿物热力学数据库联用,实现对地球深部水岩相互作用过程的模拟研究。本文阐释了使用DEW模型描述深部流体的必要性,叙述了应用DEW模型进行深部流体物种和水岩相互作用计算的基本原理,介绍了一种基于DEW模型计算流体物种的软件——FluidsLab,列举了地球深部流体以及水岩相互作用的应用案例与研究现状,最后对DEW模型后续的应用与发展方向进行展望。

Abstract

Water-rock interactions can lead to changes in the valency and chemical form of elements in fluids and thereby affect the enrichment and mineralization of elements as well as their cycling fluxes. Due to limited availability of deep Earth samples and experimental data, establishing and utilizing models of deep aqueous fluids can effectively enhance our understanding of water-rock interactions in deep Earth. The Deep Earth Water (DEW) model is a database used to describe the thermodynamic properties of aqueous species in deep aqueous fluids, and it can be used together with mineral thermodynamic databases for modeling water-rock interactions in deep Earth. In this review, we discuss the necessity of using the DEW model to describe deep aqueous fluids. We first describe the basic principles of using the DEW model to calculate aqueous species in deep fluids resulting from water-rock interactions in deep Earth. We then introduce “FluidsLab”, a software we developed to calculate aqueous species, and summarize applications of the DEW model in deep Earth researches. Finally we discuss future application of the DEW model and its development directions.

关键词

水岩相互作用 / 俯冲带 / 地球深部流体 / 热力学 / DEW模型

Key words

water-rock interaction / subduction zones / deep Earth fluids / thermodynamic model / DEW model

中图分类号

P592

引用本文

导出引用
兰春元 , 张立飞 , 陶仁彪 , . 基于DEW模型的地球深部流体组成与水岩相互作用计算方法综述. 地学前缘. 2024, 31(1): 64-76 https://doi.org/10.13745/j.esf.sf.2023.12.20
Chunyuan LAN, Lifei ZHANG, Renbiao TAO, et al. Calculation methods for fluid composition and water-rock interaction in the deep Earth based on DEW model—a review[J]. Earth Science Frontiers. 2024, 31(1): 64-76 https://doi.org/10.13745/j.esf.sf.2023.12.20

参考文献

[1]
DONG J J, FISCHER R A, STIXRUDE L P, et al. Water storage capacity of the martian mantle through time[J]. Icarus, 2022, 385: 115113.
[2]
SVERJENSKY D A, STAGNO V, HUANG F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle[J]. Nature Geoscience, 2014, 7(12): 909-913.
[3]
WANI S P. Natural water remediation: chemistry and technology[J]. Current Science, 2020, 119(12): 2025-2026.
[4]
TANG Y G, YANG C W, FINKELMAN R B, et al. Behavior of minerals and trace elements during cleaning of three coals with moderately high ash yields[J]. Energy and Fuels, 2020, 34(2): 2501-2515.
[5]
YADAV V B, GADI R, KALRA S. Clay based nanocomposites for removal of heavy metals from water: a review[J]. Journal of Environmental Management, 2019, 232: 803-817.
[6]
TONG S, RODRIGUEZ-GONZALEZ L C, PAYNE K A, et al. Effect of pyrite pretreatment, particle size, dose, and biomass concentration on particulate pyrite autotrophic denitrification of nitrified domestic wastewater[J]. Environmental Engineering Science, 2018, 35(8): 875-886.
[7]
GODDERIS Y, ROELANDT C, SCHOTT J, et al. Towards an integrated model of weathering, climate, and biospheric processes[M]//OELKERS E H, SCHOTT J. Thermodynamics and kinetics of water-rock interaction. Toulouse: Mineralogical Society of America, 2009: 411-434.
[8]
SCHOTT J, POKROVSKY O S, OELKERS E H. The link between mineral dissolution/precipitation kinetics and solution chemistry[M]//OELKERS E H, SCHOTT J. Thermodynamics and kinetics of water-rock interaction. Toulouse: Mineralogical Society of America, 2009: 207-258.
[9]
SCHWEDA P, SJOBERG L, SODERVALL U. Near-surface composition of acid-leached labradorite investigated by SIMS[J]. Geochimica et Cosmochimica Acta, 1997, 61(10): 1985-1994.
[10]
WESTRICH H R, CYGAN R T, CASEY W H, et al. The dissolution kinetics of mixed-cation orthosilicate minerals[J]. American Journal of Science, 1993, 293(9): 869-893.
[11]
POKROVSKY O S, SCHOTT J. Experimental study of brucite dissolution and precipitation in aqueous solutions: surface speciation and chemical affinity control[J]. Geochimica et Cosmochimica Acta, 2004, 68(1): 31-45.
[12]
BELKHIRI L, MOUNI L, TIRI A. Water-rock interaction and geochemistry of groundwater from the Ain Azel aquifer, Algeria[J]. Environmental Geochemistry and Health, 2012, 34(1): 1-13.
[13]
STEELE-MACLNNIS M, MANNING C E. Hydrothermal properties of geologic fluids[J]. Elements, 2020, 16(6): 375-380.
[14]
李万财, 倪怀玮. 俯冲带脱水作用与板片流体地球化学[J]. 中国科学: 地球科学, 2020, 50(12): 1770-1784.
[15]
GUO S, CHU X, HERMANN J, et al. Multiple episodes of fluid infiltration along a single metasomatic channel in metacarbonates (Mogok Metamorphic Belt, Myanmar) and implications for CO2 release in orogenic belts[J]. Journal of Geophysical Research: Solid Earth, 2021, 126: e2020JB02098.
[16]
JING X Y, YANG H B, CAO Y Q, et al. Identification of indicators of groundwater quality formation process using a zoning model[J]. Journal of Hydrology, 2014, 514: 30-40.
[17]
CHARLTON S R, PARKHURST D L. Modules based on the geochemical model PHREEQC for use in scripting and programming languages[J]. Computers and Geosciences, 2011, 37(10): 1653-1663.
[18]
MAFFEIS A, FERRANDO S, CONNOLLY J A D, et al. Thermodynamic analysis of HP-UHP fluid inclusions: the solute load and chemistry of metamorphic fluids[J]. Geochimica et Cosmochimica Acta, 2021, 315: 207-229.
[19]
DUAN Z H, MOLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O style.1. Pure systems from 0 ℃ to 1000 ℃ and 0 to 8000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2605-2617.
[20]
DUAN Z H, MOLLER N, WEARE J H. An equation of state for the CH4-CO2-H2O style.2. Mixtures from 50 ℃ to 1000oC and 0 to 1000 bar[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2619-2631.
[21]
CONNOLLY J A D. Phase-diagram methods for graphitic rocks and application to the system C-O-H-FeO-TiO2-SiO2[J]. Contributions to Mineralogy and Petrology, 1995, 119(1): 94-116.
[22]
OHMOTO H, KERRICK D. Devolatilization equilibria in graphitic systems[J]. American Journal of Science, 1977, 277(8): 1013-1044.
[23]
FRENCH B M. Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures[J]. Reviews of Geophysics, 1966, 4(2): 223-253.
[24]
HUIZENGA J M. Thermodynamic modelling of a cooling C-O-H fluid-graphite system: implications for hydrothermal graphite precipitation[J]. Mineralium Deposita, 2011, 46(1): 23-33.
[25]
HUIZENGA J M. Thermodynamic modelling of C-O-H fluids[J]. Lithos, 2001, 55(1/2/3/4): 101-114.
[26]
FREZZOTTI M L, SELVERSTONE J, SHARP Z D, et al. Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps[J]. Nature Geoscience, 2011, 4(10): 703-706.
[27]
FACQ S, DANIEL I, MONTAGNAC G, et al. In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions[J]. Geochimica et Cosmochimica Acta, 2014, 132: 375-390.
[28]
张志刚, 张驰, 耿明. 地幔条件下富水流体状态方程[J]. 中国科学: 地球科学, 2016, 46(5): 569-581.
[29]
TUMIATI S, TIRABOSCHI C, MIOZZI F, et al. Dissolution susceptibility of glass-like carbon versus crystalline graphite in high-pressure aqueous fluids and implications for the behavior of organic matter in subduction zones[J]. Geochimica et Cosmochimica Acta, 2020, 273: 383-402.
[30]
MANNING C E, FREZZOTTI M L. Subduction-zone fluids[J]. Elements, 2020, 16(6): 395-400.
[31]
SVERJENSKY D A, HARRISON B, AZZOLINI D. Water in the deep Earth: the dielectric constant and the solubilities of quartz and corundum to 60 kb and 1200 ℃[J]. Geochimica et Cosmochimica Acta, 2014, 129: 125-145.
[32]
WOLERY T J. EQ3/6: a software package for geochemical modeling of aqueous systems: package overview and installation guide (version 7.0)[M]. Livermore: Lawrence Livermore National Laboratory, 1992.
[33]
CONNOLLY J A D, GALVEZ M E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer[J]. Earth and Planetary Science Letters, 2018, 501: 90-102.
[34]
HELGESON H C. Thermodynamics of hydrothermal systems at elevated temperatures and pressures[J]. American Journal of Science, 1969, 267(7): 729-804.
[35]
HELGESON H C, KIRKHAM D H, FLOWERS G C. Theoretical prediction of the thermodynamic behavior of aqueous-electrolytes at high-pressures and temperatures.4. Calculation of activity-coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 ℃ and 5 kb[J]. American Journal of Science, 1981, 281(10): 1249-1516.
[36]
HELGESON H C, KIRKHAM D H. Theoretical prediction of thermodynamic properties of aqueous electrolytes at high-pressures and temperatures.3. Equation of state for aqueous species at infinite dilution[J]. American Journal of Science, 1976, 276(2): 97-240.
[37]
HELGESON H C, KIRKHAM D H. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures.2. Debye-Huckel parameters for activity-coefficients and relative partial molal properties[J]. American Journal of Science, 1974, 274(10): 1199-1261.
[38]
HELGESON H C, KIRKHAM D H. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures.1. Summary of thermodynamic-electrostatic properties of solvent[J]. American Journal of Science, 1974, 274(10): 1089-1198.
[39]
SHOCK E L, SASSANI D C, WILLIS M, et al. Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes[J]. Geochimica et Cosmochimica Acta, 1997, 61(5): 907-950.
[40]
SHOCK E L, HELGESON H C, SVERJENSKY D A. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures - standard partial molal properties of inorganic neutral species[J]. Geochimica et Cosmochimica Acta, 1989, 53(9): 2157-2183.
[41]
TANGER J C, HELGESON H C. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures - revised equations of state for the standard partial molal properties of ions and electrolytes[J]. American Journal of Science, 1988, 288(1): 19-98.
[42]
SHOCK E L, HELGESON H C. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000 ℃[J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 2009-2036.
[43]
SVERJENSKY D A. Thermodynamic modelling of fluids from surficial to mantle conditions[J]. Journal of the Geological Society, 2019, 176(2): 348-374.
[44]
PAN D, SPANU L, HARRISON B, et al. Dielectric properties of water under extreme conditions and transport of carbonates in the deep Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6646-6650.
[45]
HUANG F, SVERJENSKY D A. Extended deep Earth water model for predicting major element mantle metasomatism[J]. Geochimica et Cosmochimica Acta, 2019, 254: 192-230.
[46]
GALVEZ M E, MANNING C E, CONNOLLY J A D, et al. The solubility of rocks in metamorphic fluids: a model for rock-dominated conditions to upper mantle pressure and temperature[J]. Earth and Planetary Science Letters, 2015, 430: 486-498.
[47]
ZHANG C, DUAN Z H. A model for C-O-H fluid in the Earth's mantle[J]. Geochimica et Cosmochimica Acta, 2009, 73(7): 2089-2102.
[48]
CONNOLLY J A D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation[J]. Earth and Planetary Science Letters, 2005, 236(1/2): 524-541.
[49]
SHVAROV Y V. HCh: new potentialities for the thermodynamic simulation of geochemical systems offered by windows[J]. Geochemistry International, 2008, 46(8): 834-839.
[50]
ZHONG R C, LI Y X, ETSCHMANN B, et al. HighPGibbs, a practical tool for fluid-rock thermodynamic simulation in deep earth and its application on calculating nitrogen speciation in subduction zone fluids[J]. Geochemistry, Geophysics, Geosystems, 2020, 21(5). DOI: 10.1029/2020gc008973.
[51]
SZLACHTA V, VLASOV K, KEPPLER H. On the stability of acetate in subduction zone fluids[J]. Geochemical Perspectives Letters, 2022, 21: 28-31.
[52]
LAN C, TAO R, ZHANG L, et al. Carbon releasing mechanisms and flux estimation in subducting slabs: problems and progress[J]. Acta Petrologica Sinica, 2022, 38(5): 1523-1540.
[53]
CACIAGLI N C, MANNING C E. The solubility of calcite in water at 6-16 kbar and 500-800 ℃[J]. Contributions to Mineralogy and Petrology, 2003, 146(3): 275-285.
[54]
LI W C, WANG Q X. In situ determination of magnesite solubility and carbon speciation in water and NaCl solutions under subduction zone conditions[J]. Solid Earth Sciences, 2022, 7(3): 200-214.
[55]
FARSANG S, LOUVEL M, ZHAO C S, et al. Deep carbon cycle constrained by carbonate solubility[J]. Nature Communications, 2021, 12: 4311.
[56]
FARSANG S, LOUVEL M, ROSA A D, et al. Effect of salinity, pressure and temperature on the solubility of smithsonite (ZnCO3) and Zn complexation in crustal and upper mantle hydrothermal fluids[J]. Chemical Geology, 2021, 578: 120320.
[57]
LAN C Y, TAO R B, HUANG F, et al. High-pressure experimental and thermodynamic constraints on the solubility of carbonates in subduction zone fluids[J]. Earth and Planetary Science Letters, 2023, 603: 117989.
[58]
TUMIATI S, TIRABOSCHI C, SVERJENSKY D A, et al. Silicate dissolution boosts the CO2 concentrations in subduction fluids[J]. Nature Communications, 2017, 8: 616.
[59]
ZHANG L J, ZHANG L F, TANG M, et al. Massive abiotic methane production in eclogite during cold subduction[J]. National Science Review, 2022, 10: nwac207.
[60]
WANG C, TAO R B, WALTERS J B, et al. Favorable p-T-fO2 conditions for abiotic CH4 production in subducted oceanic crusts: a comparison between CH4-bearing ultrahigh- and CO2-bearing high-pressure eclogite[J]. Geochimica et Cosmochimica Acta, 2022, 336: 269-290.
[61]
BROVARONE A V, MARTINEZ I, ELMALEH A, et al. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps[J]. Nature Communications, 2017, 8: 14134.
[62]
PENG W G, ZHANG L F, TUMIATI S, et al. Abiotic methane generation through reduction of serpentinite-hosted dolomite: implications for carbon mobility in subduction zones[J]. Geochimica et Cosmochimica Acta, 2021, 311: 119-140.
[63]
BROVARONE A V, SVERJENSKY D A, PICCOLI F, et al. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere[J]. Nature Communications, 2020, 11: 3880.
[64]
HU H, BROVARONE A V, ZHANG L F, et al. Retrograde carbon sequestration in orogenic complexes: a case study from the Chinese southwestern Tianshan[J]. Lithos, 2021, 392/393: 106151.
[65]
PENG W G, ZHANG L F, MENZEL M D, et al. Multistage CO2 sequestration in the subduction zone: insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J]. Geochimica et Cosmochimica Acta, 2020, 270: 218-243.
[66]
HUANG F, SVERJENSKY D A. Mixing of carbonatitic into saline fluid during panda diamond formation[J]. Geochimica et Cosmochimica Acta, 2020, 284: 1-20.
[67]
SVERJENSKY D A, HUANG F. Diamond formation due to a pH drop during fluid-rock interactions[J]. Nature Communications, 2015, 6: 8702.
[68]
POKROVSKI G S, KOKH M A, GUILLAUME D, et al. Sulfur radical species form gold deposits on Earth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(44): 13484-13489.
[69]
POKROVSKI G S, DUBESSY J. Stability and abundance of the trisulfur radical ion S3- in hydrothermal fluids[J]. Earth and Planetary Science Letters, 2015, 411: 298-309.
[70]
LI J L, SCHWARZENBACH E M, JOHN T, et al. Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective[J]. Nature Communications, 2020, 11: 514.

基金

科学技术部国家重点研发计划项目(2019YFA0708501)

评论

PDF(2082 KB)

Accesses

Citation

Detail

段落导航
相关文章

/