我国典型土壤中Co对生物的毒害及其阈值推导

张竞元, 王学东, 梁力川, 段桂兰

PDF(2400 KB)
PDF(2400 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (2) : 137-146. DOI: 10.13745/j.esf.sf.2023.11.40
农田土壤环境质量基准

我国典型土壤中Co对生物的毒害及其阈值推导

作者信息 +

Derivation of ecotoxicity thresholds for Co in soils in China

Author information +
History +

摘要

随着人类对钴(Co)元素开发利用活动的增强,土壤Co污染问题日益受到重视。然而,目前对土壤Co的生态风险和阈值研究还很有限。本研究通过文献检索收集筛选Co生态毒性数据,并结合毒理学实验和物种敏感性分布法推导我国土壤Co的生态风险阈值。研究结果显示,文献检索和生态毒性实验获得了不同土壤性质下Co对10种生物的10%效应浓度(EC10),变化范围为7~4 696 mg/kg。利用逐步线性回归建立了8个物种EC10和土壤性质(pH、CEC、OC含量和Clay含量)以及这些物种自身敏感性k值的关系,得到8个物种的k值在-0.21~1.458,并通过种间外推模型获得无归一化模型的黑麦草及玉米渣矿化k值(-1.207和2.201)。最终获得包含土壤性质和k值的10个物种的回归模型,据此模型将预测的EC10值归一化到4种土壤条件下。利用物种敏感性分布法推导得到4种土壤条件下Co的生态安全阈值(HC5),经过老化淋洗因子的校正,在酸性、中性、碱性和石灰性土壤条件下分别为7.3、44、72.08和38.88 mg/kg,该结果可为土壤Co污染风险评价及相关标准的制定提供依据。

Abstract

With increasing cobalt (Co) uses cobalt contamination in soil has attracted increasing attention. However, the potential ecological risks of Co contamination in soil and related risk thresholds have not been well researched. This study aims to derive ecological risk thresholds of Co in soil in China, using Co ecotoxicity data collected and screened through literature research, combined with ecotoxicological experiments and species sensitivity distribution (SSD) method. According to results, the EC10 values of Co in soils with different properties ranged between 7 to 4696 mg/kg. The relationships between EC10 and soil properties (pH, CEC, OC, Clay) and sensitivity k value of species were established by stepped-linear regression for eight species. The k value of the eight species ranged between -0.21 to 1.458. The k value (-1.207 and 2.201) of the non-normalized ryegrass and maize residue mineralization(MR) were obtained by extrapolation of the interspecies correlation estimation (ICE) model.Finally, regression models, with soil properties and k value as independent variables, were obtained for 10 species, and the predicted EC10 values were normalized to four soil conditions. Using SSD method and adjusting for aging leaching factor,the ecological risk threshold (HC5) values for Co in soil were derived for acidic (7.3 mg/kg), neutral (44 mg/kg), alkaline (72.08 mg/kg) and calcareous (38.88 mg/kg) soil conditions. The results provide a scientific basis for the formulation of soil standards for Co and for risk management.

关键词

土壤 / / 物种敏感分布曲线 / 种间传递 / 生态风险 / 阈值

Key words

soil / cobalt / species sensitive distribution curve / interspecific transfer / ecological risk / threshold

中图分类号

X53;X503;X825

引用本文

导出引用
张竞元 , 王学东 , 梁力川 , . 我国典型土壤中Co对生物的毒害及其阈值推导. 地学前缘. 2024, 31(2): 137-146 https://doi.org/10.13745/j.esf.sf.2023.11.40
Jingyuan ZHANG, Xuedong WANG, Lichuan LIANG, et al. Derivation of ecotoxicity thresholds for Co in soils in China[J]. Earth Science Frontiers. 2024, 31(2): 137-146 https://doi.org/10.13745/j.esf.sf.2023.11.40

参考文献

[1]
陈世宝, 王萌, 李杉杉, 等. 中国农田土壤重金属污染防治现状与问题思考[J]. 地学前缘, 2019, 26(6): 35-41.
[2]
JIANG M, WANG K, WANG Y P, et al. Technologies for the cobalt-contaminated soil remediation: a review[J]. Science of the Total Environment, 2022, 813: 151908.
[3]
蒋喜艳, 张述习, 尹西翔, 等. 土壤-作物系统重金属污染及防治研究进展[J]. 生态毒理学报, 2021, 16(6): 150-160.
[4]
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1996.
[5]
王云, 魏复盛. 土壤环境元素化学[M]. 北京: 中国环境科学出版社, 1995.
[6]
罗泽娇, 夏梦帆, 黄唯怡. 钴在土壤和植物系统中的迁移转化行为及其毒性[J]. 生态毒理学报, 2019, 14(2): 81-90.
[7]
祝贺, 孙志高, 衣华鹏, 等. 黄河口不同类型湿地土壤中钒和钴含量的空间分布特征[J]. 水土保持学报, 2016, 30(1): 315-320.
[8]
李金瓶, 王学东, 马虹, 等. 土壤外源钴对大麦根伸长的毒害及其预测模型[J]. 农业环境科学学报, 2020, 39(12): 2771-2778.
[9]
刘素萍. 石灰性土壤中钴的形态变化和钴对番茄生长发育、产量的影响[D]. 太谷: 山西农业大学, 2004.
[10]
罗丹, 胡欣欣, 郑海锋, 等. 钴对蔬菜毒害的临界值[J]. 生态学杂志, 2010, 29(6): 1114-1120.
[11]
王秀敏, 魏显有, 刘云惠, 等. 施用钴盐对玉米幼苗植株生长及钴含量的影响[J]. 河北农业大学学报, 1999, 22(2): 22-23.
[12]
邓冬冬. 上海某典型工业地块土壤中特征污染物铜、汞、钴重金属污染健康风险评价[J]. 土壤科学, 2022, 10(2): 91-100.
[13]
生态环境部,国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018.
[14]
窦韦强, 安毅, 秦莉, 等. 农用地土壤重金属生态安全阈值确定方法的研究进展[J]. 生态毒理学报, 2019, 14(4): 54-64.
[15]
董明明, 牟力言, 秦莉, 等. 物种敏感性分布法拟合函数的拟合优度评价[J]. 农业环境科学学报, 2021, 40(3): 544-551.
[16]
曾庆楠, 安毅, 秦莉, 等. 物种敏感性分布法在建立土壤生态阈值方面的研究进展[J]. 安全与环境学报, 2018, 18(3): 1220-1224.
[17]
罗晶晶, 吴凡, 张加文, 等. 我国土壤受试植物筛选与毒性预测[J]. 中国环境科学, 2022, 42(7): 3295-3305.
[18]
冯承莲, 付卫强, SCOTT D, 等. 种间关系预测(ICE)模型在水质基准研究中的应用[J]. 生态毒理学报, 2015, 10(1): 81-87.
[19]
International Organization for Standardization. Soil quality - biological methods - determination of nitrogen mineralization and nitrification in soils and the influence of chemicals on these processes: ISO 14238: 2012[S]. Geneva: International Organization for Standardization, 2012.
[20]
International Organization for Standardization. Soil quality - determination of the effects of pollutants on soil flora - part 1: method for the measurement of inhibition of root growth:ISO 11269-1: 2012[S]. Geneva: International Organization for Standardization, 2012.
[21]
WANG X Q, WEI D P, MA Y B, et al. Soil ecological criteria for nickel as a function of soil properties[J]. Environmental Science and Pollution Research, 2018, 25(3): 2137-2146.
[22]
何俊, 田昕竹, 王学东, 等. 基于根微形态测定土壤Zn对大麦的毒性阈值及其预测模型[J]. 中国农业科学, 2017, 50(7): 1263-1270.
[23]
王小庆, 李波, 韦东普, 等. 土壤中铜和镍的植物毒性预测模型的种间外推验证[J]. 生态毒理学报, 2013, 8(1): 77-84.
[24]
WANG X Q, WEI D P, MA Y B, et al. Derivation of soil ecological criteria for copper in Chinese soils[J]. PLoS One, 2015, 10(7): e0133941.
[25]
LI B, ZHANG H T, MA Y B, et al. Influences of soil properties and leaching on nickel toxicity to barley root elongation[J]. Ecotoxicology and Environmental Safety, 2011, 74(3): 459-466.
[26]
BRILL J L, BELANGER S E, CHANEY J G, et al. Development of algal interspecies correlation estimation models for chemical hazard assessment[J]. Environmental Toxicology and Chemistry, 2016, 35(9): 2368-2378.
[27]
BARRON M G, LAMBERT F N. Potential for interspecies toxicity estimation in soil invertebrates[J]. Toxics, 2021, 9(10): 265.
[28]
MICÓ C, LI H F, ZHAO F J, et al. Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils[J]. Environmental Pollution, 2008, 156(3): 883-890.
[29]
LI H F, GRAY C, MICO C, et al. Phytotoxicity and bioavailability of cobalt to plants in a range of soils[J]. Chemosphere, 2009, 75(7): 979-986.
[30]
黄兴华, 李勖之, 王国庆, 等. 保护陆生生态的土壤铜环境基准研究[J]. 中国环境科学, 2022, 42(10): 4720-4730.
[31]
QIN L Y, WANG M, ZHAO S W, et al. Effect of soil leaching on the toxicity thresholds (ECx) of Zn in soils with different properties[J]. Ecotoxicology and Environmental Safety, 2021, 228: 112999.
[32]
王小庆, 韦东普, 黄占斌, 等. 物种敏感性分布在土壤中镍生态阈值建立中的应用研究[J]. 农业环境科学学报, 2012, 31(1): 92-98.
[33]
李宁, 郭雪雁, 陈世宝, 等. 基于大麦根伸长测定土壤Pb毒性阈值、淋洗因子及其预测模型[J]. 应用生态学报, 2015, 26(7): 2177-2182.
[34]
ZHENG H, CHEN L, LI N, et al. Toxicity threshold of lead (Pb) to nitrifying microorganisms in soils determined by substrate-induced nitrification assay and prediction model[J]. Journal of Integrative Agriculture, 2017, 16(8): 1832-1840.
[35]
QIN L Y, WANG L F, SUN X Y, et al. Ecological toxicity (ECx) of Pb and its prediction models in Chinese soils with different physiochemical properties[J]. Science of the Total Environment, 2022, 853: 158769.
[36]
WAN Y N, JIANG B, WEI D P, et al. Ecological criteria for zinc in Chinese soil as affected by soil properties[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110418.
[37]
ZHAO S W, QIN L Y, WANG L F, et al. Ecological risk thresholds for Zn in Chinese soils[J]. Science of the Total Environment, 2022, 833: 155182.
[38]
CRIEL P, LOCK K, VAN EECKHOUT H, et al. Influence of soil properties on copper toxicity for two soil invertebrates[J]. Environmental Toxicology and Chemistry, 2008, 27(8): 1748-1755.
[39]
OORTS K, GHESQUIERE U, SWINNEN K, et al. Soil properties affecting the toxicity of CuCl2 and NiCl2 for soil microbial processes in freshly spiked soils[J]. Environmental Toxicology and Chemistry, 2006, 25(3): 836-844.
[40]
宋子杰, 赵龙, 党秀丽, 等. 土壤中三价锑的老化对秀丽隐杆线虫毒性的影响[J]. 环境科学研究, 2022, 35(9): 2195-2204.
[41]
蔡琼瑶, 徐俏, 周振, 等. 外源铅在4种土壤中的老化特征及对土壤化学性质的影响[J]. 环境科学学报, 2019, 39(3): 899-907.
[42]
林祥龙, 孙在金, 马瑾, 等. 土壤外源Sb(Ⅲ)的老化对其形态和跳虫(Folsomia candida)毒性的影响[J]. 生态毒理学报, 2017, 12(5): 153-160.
[43]
OORTS K. Threshold calculation for metals in Soil. (2018.5.17)[2023.8.10]. https://arche-consulting.be/tools/threshold-calculator-for-metals-in-soil/
[44]
Canadian Council of Ministers of the Environment. A protocol for the derivation of environmental and human health soil quality guidelines[R]. Winnipeg: CCME, 2006.
[45]
郑丽萍, 王国庆, 龙涛, 等. 不同国家基于生态风险的土壤筛选值研究及启示[J]. 生态毒理学报, 2018, 13(6): 39-49.
[46]
SWARTJES F A, RUTGERS M, LIJZEN J P A, et al. State of the art of contaminated site management in The Netherlands: policy framework and risk assessment tools[J]. Science of the Total Environment, 2012, 427/428: 1-10.
[47]
United States Environmental Protection Agency (US EPA). Guidance for developing ecological soil screening levels[R]. Washington DC: US Environmental Protection Agency, 2005.

脚注

基金

国家自然科学基金项目(41877496)

评论

PDF(2400 KB)

Accesses

Citation

Detail

段落导航
相关文章

/