松辽盆地深部基底地应力状态:来自松科2井地应力实测数据的证据

王斌, 孙东生, 李阿伟, 杨跃辉, 陈群策

PDF(11236 KB)
PDF(11236 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (2) : 377-390. DOI: 10.13745/j.esf.sf.2023.11.38
非主题来稿选登

松辽盆地深部基底地应力状态:来自松科2井地应力实测数据的证据

作者信息 +

In situ stress state of deep basement in the Songliao Basin: Evidence from in situ stress measurement in SK-2 borehole

Author information +
History +

摘要

松辽盆地基底内的地应力状态是地震等地质灾害研究、盆地动力学分析和油气资源开发利用等领域的重要基础数据。岩心非弹性应变恢复法是近年来发展起来的基于钻孔岩心的近原位三维地应力测量方法。本文将岩心非弹性应变恢复法应用于松辽盆地大陆科学钻探松科2井(SK-2)深部地应力测量,获得了松辽盆地基底内近6~7 km的三维地应力状态,结果表明盆地基底内(6 646~6 846 m)为走滑断层应力环境(σH>σV>σh),最大水平主应力方向为近E-W方向。盆地基底内的应力状态与盆地内及周边邻近区域的震源机制解(震源深度7~15 km)所反演的应力环境相吻合。盆地基底处于以E-W向近水平挤压为主导的构造应力场,这种应力状态的形成,可能为西太平洋板块NW向挤压运动背景下,受控于NE-NEE走向的依兰—伊通断裂和敦化—密山断裂右行走滑产生的次级应力场。研究结果对于认识区域构造应力场背景及松辽盆地的形成与演化过程具有重要参考价值。

Abstract

The magnitude and orientation information of in situ stresses in the basement of the Songliao Basin are important data in geodynamics research, seismology, and deep resources exploitation and utilization. The anelastic strain recovery (ASR) method is a three-dimensional in situ stress measurement method based on drill cores. In this report, three-dimensional in situ stresses at 6-7 km depth in basement of SK-2 borehole in the Songliao Basin, Northeast China, is determined using ASR method. The stress state of basement (6646-6846 m) is consistent with thrust and strike-slip faulting regime (σH>σV>σh) and the orientation of maximum horizontal principal stress is near E-W. The stress state determined by stress measurement is in agreement with results from focal mechanisms of shallow earthquakes (7-15 km) within the Songliao Basin and adjacent regions. The research findings should provide an important reference for the understanding of regional tectonic stress field and the formation and evolution of the Songliao Basin.

关键词

松辽盆地 / 松科二井 / 地应力 / 非弹性应变恢复法 / 震源机制解

Key words

Songliao Basin / Scientific Drilling borehole (SK-2) / in situ stress / anelastic strain recovery method / focal mechanism solution

中图分类号

P631.815;P553

引用本文

导出引用
王斌 , 孙东生 , 李阿伟 , . 松辽盆地深部基底地应力状态:来自松科2井地应力实测数据的证据. 地学前缘. 2024, 31(2): 377-390 https://doi.org/10.13745/j.esf.sf.2023.11.38
Bin WANG, Dongsheng SUN, Awei LI, et al. In situ stress state of deep basement in the Songliao Basin: Evidence from in situ stress measurement in SK-2 borehole[J]. Earth Science Frontiers. 2024, 31(2): 377-390 https://doi.org/10.13745/j.esf.sf.2023.11.38

参考文献

[1]
吴怀春, 张世红, 黄清华. 中国东北松辽盆地晚白垩世青山口组浮动天文年代标尺的建立[J]. 地学前缘, 2008, 15(4): 159-169.
[2]
WANG C S, HUANG Y J, ZHAO X X. Unlocking a Cretaceous geologic and geophysical puzzle: scientific drilling of Songliao Basin in Northeast China[J]. The Leading Edge, 2009, 28(3): 340-344.
[3]
李恩泽, 刘财, 张良怀, 等. 松辽盆地地震构造与地震活动相关性研究[J]. 地球物理学进展, 2012, 27(4): 1337-1349.
[4]
单玄龙, 秦树洪, 张艳, 等. 松辽盆地北部浅部基底推覆伸展作用的地震学证据与地质意义[J]. 地球物理学报, 2009, 52(8): 2044-2049.
[5]
韩江涛, 郭振宇, 刘文玉, 等. 松辽盆地岩石圈减薄的深部动力学过程[J]. 地球物理学报, 2018, 61(6): 2265-2279.
[6]
LI Y L, LIU H C, HUANGFU P P, et al. Early Cretaceous lower crustal reworking in NE China: insights from geochronology and geochemistry of felsic igneous rocks from the Great Xing’an range[J]. International Journal of Earth Sciences, 2018, 107(6): 1955-1974.
[7]
GUO Z, WANG K, YANG Y J, et al. The origin and mantle dynamics of quaternary intraplate volcanism in Northeast China from joint inversion of surface wave and body wave[J]. Journal of Geophysical Research: Solid Earth, 2018, 123: 2410-2425.
[8]
WU M L, ZHANG C Y, FAN T Y. Stress state of the Baoxing segment of the southwestern Longmenshan Fault Zone before and after the Ms 7.0 Lushan earthquake[J]. Journal of Asian Earth Sciences, 2016, 121: 9-19.
[9]
ZHANG C Y, CHEN Q C, QIN X H, et al. In-situ stress and fracture characterization of a candidate repository for spent nuclear fuel in Gansu, northwestern China[J]. Engineering Geology, 2017, 231: 218-229.
[10]
陈凤, 罗美娥, 张维平, 等. 大庆外围油田地应力特征及人工裂缝形态分析[J]. 断块油气田, 2006, 3: 13-15.
[11]
郭啟良, 丁健民, 梁国平, 等. 松辽盆地油井水压致裂应力测量研究[C]// 中国地震局地壳应力研究所. 地壳构造与地壳应力文集. 北京: 地震出版社, 1994: 93-105.
[12]
雷茂盛, 王玉华, 赵杰. 根据FMI资料分析大庆油田徐家围子断陷构造应力场[J]. 现代地质, 2007, 21(1): 14-21.
[13]
杨亮. 徐家围子断陷沙河子组现今地应力方向及展布[J]. 大庆石油地质与开发, 2016, 5: 48-52.
[14]
左松林, 鹿立卿, 肖洪伟, 等. 新站油田地应力研究与应用[J]. 大庆石油地质与开发, 2008, 27(1): 93-96.
[15]
陈志德, 蒙启安, 万天丰, 等. 松辽盆地古龙凹陷构造应力场弹-塑性增量法数值模拟[J]. 地学前缘, 2002, 9(2): 483-492.
[16]
王群嶷, 张学婧, 王运涛, 等. 树25区块有限元三维地应力场分布规律[J]. 大庆石油地质与开发, 2010, 29(6): 134-139.
[17]
沈海超, 程远方, 赵益忠, 等. 基于实测数据及数值模拟断层对地应力的影响[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3985-3990.
[18]
ZHAO D P, LEI J S, TANG R Y. Origin of the Changbai intraplate volcanism in Northeast China: evidence from seismic tomography[J]. Chinese Science Bulletin, 2004, 49(13): 1401-1408.
[19]
姚立珣, 汪进, 李亚荣. 用震源机制解确定东北地区地壳应力场[J]. 东北地震研究, 1992, 8(2): 27-32.
[20]
葛荣峰, 张庆龙, 解国爱, 等. 郯庐断裂带北段及邻区现代地震活动性与应力状态[J]. 地震地质, 2009, 31(1): 141-154.
[21]
吴微微, 杨建思, 苏金蓉, 等. 2013年吉林前郭—乾安震源区中强地震矩张量反演与区域孕震环境研究[J]. 地球物理学报, 2014, 57(8): 2541-2554.
[22]
MATSUKI K. Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core[C]// Proceedings of the 7th International conference on rock mechanics. London: Taylor and Francis Press, 1991: 557-560.
[23]
LIN W R, EN CHAO Y, HISAO I, et al. Preliminary results of stress measurement using drill cores of TCDP Hole-A: an application of anelastic strain recovery method to three dimensional in situ stress determination[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2007, 18: 379-393.
[24]
MATSUKI K, TAKEUCHI K. Three-dimensional in situ stress determination by anelastic strain recovery of a rock core[J]. International Journal of Rock Mechanics and Mining Sciences, 1993, 30(7): 1019-1022.
[25]
LIN W R, KWASNIEWSKI M, IMAMURA T, et al. Determination of three-dimensional in situ stresses from anelastic strain recovery measurement of cores at great depth[J]. Tectonophysics, 2006, 426(1/2): 221-238.
[26]
CUI J W, LIN W R, WANG L J, et al. Determination of three-dimensional in situ stresses by anelastic strain recovery in Wenchuan Earthquake Fault Scientific Drilling Project Hole-1(WFSD-1)[J]. Tectonophysics, 2014, 619: 123-132.
[27]
YU N, LIN W R, KOJI Y. In-situ stress analysis using the anelastic strain recovery (ASR) method at the first offshore gas production test site in the eastern Nankai Trough, Japan[J]. Marine and Petroleum Geology, 2015, 66: 418-424.
[28]
SUN D S, HIROKI S, LIN W R, et al. Stress state measured at -7 km depth in the Tarim Basin, NW China[J]. Scientific Reports, 2017, 7(1): 4503.
[29]
王连捷, 孙东生, 林为人, 等. 地应力测量的非弹性应变恢复法及应用实例[J]. 地球物理学报, 2012, 55(5): 1674-1681.
[30]
FENG Z Q, WANG C S, GRAHAM S, et al. Continental scientific drilling project of Cretaceous Songliao Basin: scientific objectives and drilling technology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 6-16.
[31]
WANG C S, FENG Z Q, ZHANG L M, et al. Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in Songliao Basin, Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 385: 17-30.
[32]
WANG T T, RAMEZANI J, WANG C S, et al. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China[J]. Earth and Planetary Science Letters, 2016, 446: 37-44.
[33]
FENG Z Q, JIA C Z, XIE X N, et al. Tectonostratigraphic units and stratigraphic sequences of the nonmarine SongliaoBasin, Northeast China[J]. Basin Research, 2010, 22(1): 79-95.
[34]
王焕弟. 岩性油气藏地球物理勘探技术与应用: 以松辽盆地南部为例[D]. 北京: 中国地质大学(北京), 2005.
[35]
WANG P J, MATTERN F, DIDENKO N A, et al. Tectonics and cycle system of the Cretaceous Songliao Basin: an inverted active continental margin basin[J]. Earth-Science Reviews, 2016, 159: 82-102.
[36]
PEI F P, XU W L, YANG D B, et al. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin[J]. Chinese Science Bulletin, 2007, 52(7): 942-948.
[37]
WANG Y, ZHANG F Q, ZHANG D W, et al. Zircon SHRIMP U-Pb dating of meta-diorite from the basement of the Songliao Basin and its geological significance[J]. Chinese Science Bulletin, 2006, 51(15): 1877-1883.
[38]
WU F Y, SUN D Y, LI H M, et al. The nature of basement beneath the Songliao Basin in NE China: geochemical and isotopic constraints[J]. Physicsand Chemistry of the Earth A, 2001, 26: 793-803.
[39]
王璞珺, 刘海波, 任延广, 等. 松辽盆地白垩系大陆科学钻探 “松科2井” 选址[J]. 地学前缘, 2017, 24(1): 216-228.
[40]
WANG Y, DOU L R. Formation time and dynamic characteristics of the northern part of the Tanlu Fault Zone in east China[J]. Seismology and Geology, 1997, 19(2): 185-192.
[41]
张庆龙, 王良书, 解国爱, 等. 郯庐断裂带北延及中新生代构造体制转换问题的探讨[J]. 高校地质学报, 2005, 11(4): 577-584.
[42]
顾承串, 朱光, 翟明见, 等. 依兰—伊通断裂带中生代走滑构造特征与起源时代[J]. 中国科学: 地球科学, 2016, 46(12): 1579-1601.
[43]
傅维洲, 贺日政. 松辽盆地及周边地带地震构造特征[J]. 世界地质, 1999, 18(2): 95-100.
[44]
李碧乐, 孙丰月, 姚凤良. 中生代敦化—密山断裂大规模左旋平移及其对金矿床形成的控制作用[J]. 大地构造与成矿学, 2002, 26(4): 390-395.
[45]
丰成君, 张鹏, 孙炜锋, 等. 日本Mw 9.0级地震对中国华北-东北大陆主要活动断裂带的影响及地震危险性初步探讨[J]. 地学前缘, 2013, 20(6): 123-140.
[46]
章振铨, 李志田, 迟天峰. 敦化—密山断裂带(二道甸子—大山嘴子段)断裂活动性评价[J]. 吉林地质, 1999, 18(1): 51-56.
[47]
孙晓猛, 王书琴, 王英德, 等. 郯庐断裂带北段构造特征及构造演化序列[J]. 岩石学报, 2010, 26(1): 165-176.
[48]
翟明见, 朱光, 刘备, 等. 依兰—伊通断裂新构造活动规律分析[J]. 地质科学, 2016(2): 594-618.
[49]
VOIGHT B. Determination of the virgin state of stress in the vicinity of a borehole from measurements of partial anelastic strain tensor in drill cores[J]. Rock Mechanics and Engineering Geology, 1968, 6(4): 201-215.
[50]
TEUFEL L W. Determination of in-situ stress from anelastic strain recovery measurements of Oriented Core[C]// Society of Petroleum Engineers SPE/DOE Low Permeability Gas Reservoirs Symposium. Colorado: Denver Press, 1983: 3-14.
[51]
WOLTER K E, BERCKHEMER H. Time dependent strain recovery of cores from the KTB: deep drill hole[J]. Rock Mechanics and Rock Engineering, 1989, 22(4): 273-287.
[52]
孙东生, LIN W R, 崔军文, 等. 非弹性应变恢复法三维地应力测量: 汶川地震科学钻孔中的应用[J]. 中国科学: 地球科学, 2014, 44(3): 510-518.
[53]
林为人. 基于岩心非弹性应变恢复量测定的深孔三维地应力测试方法[J]. 岩石力学与工程学报, 2008, 27(12): 2387-2394.
[54]
FUNATO A, ITO T. A new method of diametrical core deformation analysis for insitu stress measurements[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 91: 112-118.
[55]
YAMAMOTO Y, LIN W R, ODA H, et al. Stress states at the subduction input site, Nankai Subduction Zone, using anelastic strain recovery (ASR) data in the basement basalt and overlying sediments[J]. Tectonophysics, 2013, 600: 91-98.
[56]
MATSUKI K. Anelastic strain recovery compliance of rocks and its application to in situ stress measurement[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 952-965.
[57]
郭啟良, 丁健民, 梁国平. 根据钻孔崩落椭圆确定松辽盆地深部地壳应力方向[C]// 中国地震局地壳应力研究所. 地壳构造与地壳应力文集. 北京: 地震出版社, 1991: 64-69.
[58]
毛哲, 曾联波, 秦龙卜, 等. 徐家围子断陷深层火石岭组致密火山岩储层地应力分布规律研究[J]. 地质力学学报, 2018, 24(3): 321-331.
[59]
ZHOU J B, CAO J L, WILDE S A, et al. Paleo-Pacific subduction-accretion: evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China[J]. Tectonics, 2014, 33(12): 2444-2466.
[60]
田有, 马锦程, 刘财, 等. 西太平洋俯冲板块对中国东北构造演化的影响及其动力学意义[J]. 地球物理学报, 2019, 62(3): 1071-1082.
[61]
MARUYAMA S, ISOZAKI Y, KIMURA G, et al. Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present[J]. Island Arc, 1997, 6(1): 121-142.
[62]
KOPPERS A A P, MORGAN J P, MORGAN J W, et al. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails[J]. Earth and Planetary Science Letters, 2001, 185(3/4): 237-252.
[63]
包汉勇, 郭战峰, 张罗磊, 等. 太平洋板块形成以来的中国东部构造动力学背景[J]. 地球科学进展, 2013, 28(3): 337-346.
[64]
BARTOLINI A, LARSON R L. Pacific microplate and the pangea supercontinent in the early to Middle Jurassic[J]. Geology, 2001, 29(8): 735.
[65]
TARDUNO J A, COTTRELL R D. Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts[J]. Earth and Planetary Science Letters, 1997, 153(3/4): 171-180.
[66]
COTTRELL R D, TARDUNO J A. Late Cretaceous true polar wander: not so fast[J]. Science, 2000, 288(5475): 2283.
[67]
ENGEBRETSON D C, COX A, GORDON R G. Relative motions between oceanic and continental plates in the Pacific Basin[M]. Boulder: Geological Society of America, 1985.
[68]
NORTHRUP C J, ROYDEN L H, BURCHFIEL B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 1995, 23(8): 719.
[69]
SHARP W D, CLAGUE D A. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion[J]. Science, 2006, 313(5791): 1281-1284.
[70]
ZHAO D P. Global tomographic images of mantle plumes and subducting slabs: insight into deep Earth dynamics[J]. Physics of the Earth and Planetary Interiors, 2004, 146(1/2): 3-34.
[71]
HUANG J, ZHAO D. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B09305.
[72]
CHEN C X, ZHAO D P, TIAN Y, et al. Mantle transition zone, stagnant slab and intraplate volcanism in Northeast Asia[J]. Geophysical Journal International, 2017, 209(1): 68-85.
[73]
张慧. 太平洋板块俯冲对中国东北地区深浅震影响机理的数值模拟研究[D]. 北京: 中国地震局地震预测研究所, 2012.
[74]
ZHANG B, LEI J S, YUAN X H, et al. Detailed Moho variations under Northeast China inferred from receiver function analyses and their tectonic implications[J]. Physics of the Earth and Planetary Interiors, 2020, 300: 106448.
[75]
孟宪森, 朱景春, 孙文斌, 等. 东北地区浅源中强震及深震与西太平洋板块俯冲[J]. 东北地震研究, 1996, 2: 12-23.
[76]
杨宝俊, 张梅生, 王璞珺. 中国油气区地质-地球物理解析(上卷)[M]. 北京: 科学出版社, 2003: 1-185.
[77]
王小凤. 郯庐断裂带[M]. 北京: 地质出版社, 2000: 1-100.
[78]
张萍, 焦明若, 李芳, 等. 东北地区ML≥4.0地震震源机制特征分析[J]. 地震地磁观测与研究, 2011, 32(5): 9-14.
[79]
吕政, 张京辉, 邵喜彬, 等. 2006年3月31日吉林省前郭—乾安MS 4.8地震序列[J]. 国际地震动态, 2006, 36(10): 27-32.
[80]
高金哲, 李志伟, 包丰, 等. 2006年吉林乾安—前郭M 5.0级地震深度及其成因探讨[J]. 地球物理学进展, 2013, 28(5): 2328-2335.
[81]
盛书中, 万永革, 王晓山, 等. 2013年吉林松原震群重定位及其发震构造[J]. 地学前缘, 2017, 24(2): 212-219.
[82]
李延兴, 张静华, 李智, 等. 太平洋板块俯冲对中国大陆的影响[J]. 测绘学报, 2006, 35(2): 99-105.
[83]
LI Y X, YANG G H, LI Z, et al. Movement and strain conditions of active blocks in the Chinese mainland[J]. Science in China Series D: Earth Sciences, 2003, 46(2): 82-117.
[84]
朱光, 王道轩, 刘国生, 等. 郯庐断裂带的演化及其对西太平洋板块运动的响应[J]. 地质科学, 2004, 39(1): 36-49.
[85]
CHENG Y H, WANG S Y, LI Y, et al. Late Cretaceous-Cenozoic thermochronology in the southern Songliao Basin, NE China: new insights from apatite and zircon fission track analysis[J]. Journal of Asian Earth Sciences, 2018, 160: 95-106.
[86]
韩国卿, 刘永江, FRANZ N, 等. 松辽盆地西缘边界断裂带中南段走滑性质、时间及其位移量[J]. 中国科学: 地球科学, 2012, 42(4): 471-482.
[87]
WESSEL P, SMITH W H F. Free software helps map and display data[J]. Eos, Transactions American Geophysical Union, 1991, 72(41): 441-446.

脚注

基金

国家自然科学基金面上项目(42174122)
云南省重大科技专项计划项目(202002AF080003)
云南省重大科技专项计划项目(202102AF080001)
中央级公益性科研院所基本科研业务费项目(DZLXJK202201)
中央级公益性科研院所基本科研业务费项目(CKSF2021462/YT)
中央级公益性科研院所基本科研业务费项目(CKSF2023308/YT)
中央级公益性科研院所基本科研业务费项目(CKSF2023316/YT)

评论

PDF(11236 KB)

Accesses

Citation

Detail

段落导航
相关文章

/