大地幔楔的两个深部碳循环圈:差异及宜居效应

李曙光, 汪洋, 刘盛遨

PDF(7453 KB)
PDF(7453 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 15-27. DOI: 10.13745/j.esf.sf.2023.10.7
地球动力学与深部过程

大地幔楔的两个深部碳循环圈:差异及宜居效应

作者信息 +

Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth's habitability

Author information +
History +

摘要

本文总结评述了西太平洋板块深俯冲及在东亚地幔过渡带滞留和与之相关的晚白垩世和新生代东亚板内玄武岩共同构成的大地幔楔板内深部碳循环圈存在的证据;探讨了大地幔楔板内碳循环圈与岛弧系统碳循环圈在地幔碳酸盐化交代介质、碳酸盐种属、氧化还原反应及碳酸盐化地幔部分熔融发生机制等方面的差异和对显生宙大气氧含量保持稳定及温室效应周期性变化的影响;并指出了定量估计深俯冲碳酸盐歧化反应还原成金刚石而留在地幔过渡带和通过板内玄武质火山返还大气的碳各自所占有比例应是未来需研究的重要课题。

Abstract

In this paper we summarize the evidence for the deep carbon cycling in a big mantle wedge composed of the deeply subducted Western Pacific Plate in the mantle transition zone and the exposed Late Cretaceous and Cenozoic intraplate basalts. We explore the differences in the carbon cycle between the big mantle wedge and island arc systems regarding metasomatic agents, carbonate species, redox reactions and mechanisms of partial melting of carbonated mantle, as well as their effects on maintaining a stable oxygen level in the Phanerozoic atmosphere and on the periodic changes in the greenhouse effect. We point out that quantitative estimate of the proportion of carbon left in the mantle transition zone through reduction of deep subducted carbonates into diamond, and carbon returned to the atmosphere through intraplate basaltic volcanoes, is an important topic for future study.

关键词

岛弧碳循环圈 / 板内碳循环圈 / 大地幔楔 / 宜居气候

Key words

island arc carbon cycling / intraplate carbon cycling / big mantle wedge / habitable climates

中图分类号

P542;P467;P595

引用本文

导出引用
李曙光 , 汪洋 , 刘盛遨. 大地幔楔的两个深部碳循环圈:差异及宜居效应. 地学前缘. 2024, 31(1): 15-27 https://doi.org/10.13745/j.esf.sf.2023.10.7
Shuguang LI, Yang WANG, Sheng’ao LIU. Two modes of deep carbon cycling in a big mantle wedge: Differences and effects on Earth's habitability[J]. Earth Science Frontiers. 2024, 31(1): 15-27 https://doi.org/10.13745/j.esf.sf.2023.10.7

参考文献

[1]
HUANG J, ZHAO D P. High-resolution mantle tomography of China and surrounding regions[J]. Journal of Geophysical Research: Solid Earth, 2006, 111: B09305.
[2]
李曙光, 汪洋. 中国东部大地幔楔形成时代和华北克拉通岩石圈减薄新机制: 深部再循环碳的地球动力学效应[J]. 中国科学: 地球科学, 2018, 48(7): 809-824.
[3]
SU B X, HU Y, TENG F Z, et al. Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism[J]. Earth and Planetary Science Letters, 2019, 522: 79-86.
[4]
XIAO Y, YUAN M, SU B X, et al. The chromite crisis in the evolution of continental magmas and the initial high δ26Mg reservoir[J]. Journal of Petrology, 2023, 64: 1-18.
[5]
HUANG J, LI S G, XIAO Y L, et al. Origin of low δ26Mg Cenozoic basalts from South China Block and their geodynamic implications[J]. Geochimica et Cosmochimica Acta, 2015, 164: 298-317.
[6]
LI S G, YANG W, KE S, et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China[J]. National Science Review, 2017, 4(1): 111-120.
[7]
LIU S A, QU Y R, WANG Z Z, et al. The fate of subducting carbon tracked by Mg and Zn isotopes:a review and new perspectives[J]. Earth-Science Reviews, 2022, 228: 104010.
[8]
TIAN H C, YANG W, LI S G, et al. Origin of low δ26Mg basalts with EM-I component: evidence for interaction between enriched lithosphere and carbonated asthenosphere[J]. Geochimica et Cosmochimica Acta, 2016, 188: 93-105.
[9]
YANG W, TENG F Z, ZHANG H F, et al. Magnesium isotopic systematics of continental basalts from the North China Craton: implications for tracing subducted carbonate in the mantle[J]. Chemical Geology, 2012, 328: 185-194.
[10]
李曙光. 深部碳循环的Mg同位素示踪[J]. 地学前缘, 2015, 22(5): 143-159.
[11]
LIU S A, WANG Z Z, LI S G, et al. Zinc isotope evidence for a large-scale carbonated mantle beneath eastern China[J]. Earth and Planetary Science Letters, 2016, 444: 169-178.
[12]
WANG S J, LI S G. Magnesium isotope geochemistry of the carbonate-silicate system in subduction zones[J]. National Science Review, 2022, 9(6): 18-28.
[13]
DASGUPTA R, HIRSCHMANN M M, SMITH N D. Partial melting experiments of peridotite CO2 at 3 GPa and genesis of alkalic ocean island basalts[J]. Journal of Petrology, 2007, 48(11): 2093-2124.
[14]
ROEDER P E, GOFTON E, THORNBER C. Cotectic proportions of olivine and spinel in olivine-tholeiitic basalt and evaluation of pre-eruptive processes[J]. Journal of Petrology, 2006, 47(5): 883-900.
[15]
MALLMANN G, O’NEILL H S C. The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb)[J]. Journal of Petrology, 2009, 50(9): 1765-1794.
[16]
SHEN J, XIA J X, QIN L P, et al. Stable chromium isotope fractionation during magmatic differentiation: insights from Hawaiian basalts and implications for planetary redox conditions[J]. Geochimica et Cosmochimica Acta, 2020, 278: 289-304.
[17]
SHEN J, ZUO Z W, HE Y S, et al. Chromium isotope system of intraplate basaltic lavas: implication for recycling materials into mantle[J]. Lithos, 2023, 454/455: 107264. DOI: 10.1016/j.lithos.2023.107264.
[18]
YANG C, LIU S A, ZHANG L, et al. Zinc isotope fractionation between Cr-spinel and olivine and its implications for chromite crystallization during magma differentiation[J]. Geochimica et Cosmochimica Acta, 2021, 313: 277-294.
[19]
WANG Z X, LIU S A, YANG C, et al. Diffusion-driven Zn and Mg isotope fractionation in magmatic Fe-Ti-Cr oxides and implications for timescales of magmatic processes[J]. Geochimica et Cosmochimica Acta, 2023, 352: 107-121.
[20]
BONDINIER J L, GODARD M. Orogenic, ophiolitic and abyssal peridotites[J]. Treatise on Geochemistry, 2014, 2: 103-167.
[21]
TENG F Z, LI W Y, KE S, et al. Magnesium isotopic composition of the Earth and chondrites[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 4150-4166.
[22]
LIU S A, LI S G, HE Y S, et al. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu-Au mineralization[J]. Geochimica et Cosmochimica Acta, 2010, 74(24): 7160-7178.
[23]
HE Y S, MENG X N, KE S, et al. A nephelinitic component with unusual δ56Fe in Cenozoic basalts from eastern China and its implications for deep oxygen cycle[J]. Earth and Planetary Science Letters, 2019, 512: 175-183.
[24]
LIU S A, WU T H, LI S G, et al. Contrasting fates of subducting carbon related to different oceanic slabs in East Asia[J]. Geochimica et Cosmochimica Acta, 2022, 324: 156-173.
[25]
QU Y R, LIU S A, WU T C, et al. Tracing carbonate dissolution in subducting sediments by zinc and magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2022, 319: 56-72.
[26]
SHEN J, LI S G, WANG S J, et al. Subducted Mg-rich carbonates into the deep mantle wedge[J]. Earth and Planetary Science Letters, 2018, 503: 118-130.
[27]
SHU Z T, LIU S A, PRELEVIC D, et al. Recycling of carbonates into the deep mantle beneath central Balkan Peninsula: Mg-Zn isotope evidence[J]. Lithos, 2022, 432: 106899.
[28]
SHU Z T, LIU S A, PRELEVIC D, et al. Recycled carbonate-bearing silicate sediments in the sources of Circum-Mediterranean K-rich lavas: evidence from Mg-Zn isotopic decoupling[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(3): e2022JB025135.
[29]
WANG Z X, LIU S A, LI S G, et al. Linking deep CO2 outgassing to cratonic destruction[J]. National Science Review, 2022, 9(6): nwac001.
[30]
GREEN D H. Experimental petrology of peridotites, including effects of water and carbon on melting in the Earth's upper mantle[J]. Physics and Chemistry of Minerals, 2015, 42(2): 95-122.
[31]
THOMSON A R, WALTER M J, KOHN S C, et al. Slab melting as a barrier to deep carbon subduction[J]. Nature, 2016, 529(7584): 76-79.
[32]
CAI R H, XU S, IONOV D A, et al. Carbonated big mantle wedge extending to the NE edge of the stagnant Pacific slab: constraints from Late Mesozoic-Cenozoic basalts from Far Eastern Russia[J]. Journal of Earth Science, 2022, 33(1): 121-132.
[33]
STAGNO V, OJWANG D O, MCCAMMON C A, et al. The oxidation state of the mantle and the extraction of carbon from Earth's interior[J]. Nature, 2013, 493(7430): 84-88.
[34]
SOBOLEV N V, SHATSKY V S. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation[J]. Nature, 1990, 343(6260): 742-746.
[35]
XU S T, OKAY A I, JI S Y, et al. Diamond from the Dabieshan metamorphic rocks and its implication for tectonic setting[J]. Science, 1992, 256(5053): 80-82.
[36]
SUN W D, HAWKESWORTH C J, YAO C, et al. Carbonated mantle domains at the base of the Earth's transition zone[J]. Chemical Geology, 2018, 478: 69-75.
[37]
ZHAO D P, TIAN Y, LEI J S, et al. Seismic image and origin of the Changbai intraplate volcano in East Asia: role of big mantle wedge above the stagnant Pacific slab[J]. Physics of the Earth and Planetary Interiors, 2009, 173(3/4): 197-206.
[38]
BRUNE S, WILLIAMS S E, MULLER R D, et al. Potential links between continental rifting, CO2 degassing and climate change through time[J]. Nature Geoscience, 2017, 10(12): 941-946.
[39]
YANG G, ZHAO L F, XIE X B, et al. “Double Door” opening of the Japan Sea inferred by Pn attenuation tomography[J]. Geophysical Research Letters, 2022, 49(16): e2022GL099886.
[40]
DONG Y, XIONG S, WANG F, et al. Triggering of episodic back-arc extensions in the Northeast Asian continental margin by deep mantle flow[J]. Geology, 2023, 51(2): 193-198.
[41]
LYONS T W, REINHARD C T, PLANAVSKY N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307-315.
[42]
KENT D V, MUTTONI G. Modulation of Late Cretaceous and Cenozoic climate by variable drawdown of atmospheric pCO2 from weathering of basaltic provinces on continents drifting through the equatorial humid belt[J]. Climate of the Past, 2013, 9(2): 525-546.
[43]
PLANK T, MANNING C E. Subducting carbon[J]. Nature, 2019, 574(7778): 343-352.
[44]
GOES S, AGRUSTA R, VAN HUNEN J, et al. Subduction-transition zone interaction:a review[J]. Geosphere, 2017, 13(3): 644-664.

基金

科学技术部国家重点研发计划项目(2019YFA0708400)
中国地质大学(北京)深时数字地球前沿科学中心项目(590623005)
国家自然科学基金重点项目(41730214)

评论

PDF(7453 KB)

Accesses

Citation

Detail

段落导航
相关文章

/