小小地质微生物演绎跨圈层的相互作用

谢树成, 朱宗敏, 张宏斌, 杨义, 王灿发, 阮小燕

PDF(2996 KB)
PDF(2996 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (1) : 446-454. DOI: 10.13745/j.esf.sf.2023.10.4
环境变化与生物圈层相互作用

小小地质微生物演绎跨圈层的相互作用

作者信息 +

Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review

Author information +
History +

摘要

地球系统科学特别关注跨圈层的相互作用,包括深部系统与表层系统的相互作用、表层系统海-陆-气之间的相互作用。这种庞大时空尺度的地质作用过程可以被小小的地质微生物记录下来,足见地质微生物的以小见大、见微知著特征。在二叠纪-三叠纪之交和晚奥陶世这两个完全不同场景的显生宙火山活动过程中,爆发的初期都出现了包括蓝细菌在内的海洋固氮微生物繁盛,紧接着出现了包括藻类、放射虫、有孔虫等真核微生物的繁盛,显示了火山活动引发了从原核微生物向真核微生物群落的转变过程。不仅如此,人们还发现地质微生物可以通过条带状铁建造等生物成因岩石引发了前寒武纪的火山活动,而且还可能启动了最早的板块运动。地质微生物不仅对火山活动这一与碳循环有关的跨圈层地质作用具有很灵敏的响应和反馈能力,而且还能示踪表层系统复杂的海-陆-气相互作用及其物质传输过程。利用地质微生物的诸多干湿古气候代用指标,发现了中国东部地区不同时间尺度干湿状况的三极模态空间变化格局,而且还识别出了西北地区与西太平洋海洋上层热量有关的极端干旱事件。地质微生物记录的这些干湿状况是高纬与低纬的海-陆-气相互作用在水循环方面的体现。地质微生物演绎的与碳循环和水循环有关的这些跨圈层过程仅是地球系统的冰山一角,随着地球生物学的发展和技术方法的创新,越来越多的宜居地球形成之谜会被地质微生物所破解,包括地质微生物与深部过程的互馈效应、地质微生物与地球重大环境转型的关系以及地质微生物对地球生态系统演化的影响。

Abstract

Interactions between Earth's spheres, particularly between deep Earth and surface processes or within the surface system between sea, land and the atmosphere, are a critical issue in Earth system science. Such a large-scale geological process could be recorded by tiny microbes preserved in the fossil record. Triggered by volcanic activities during the Permian-Triassic transition and in the Late Ordovician, the bloom of nitrogen-fixation bacteria including cyanobacteria and the subsequent expansion of eukaryotes including algae, radiolarians and foraminifers clearly reflected a volcanism-induced shift from prokaryotes to eukaryotes. Furthermore, it has been shown that microbial activity could lead to banded iron formations to trigger Pre-Cambrian volcanic activity and even initiate plate movement in the early Earth. These data demonstrated the critical interaction between volcanic activity and the microbial community impacting carbon cycling. Microbes could also trace the complex interaction between sea, land, and the atmosphere and its associated long-range material transport process. Using microbial proxies for hydroclimate we identified the tri-pole mode of spatial variability of dry/wet status in eastern China on different time scales, as well as the extreme drought events in northwestern China triggered by the upper-ocean thermal condition in the tropical western Pacific Oceans. The spatiotemporal variations in dry/wet status reflected in the microbial records are due to variations in sea-land-atmosphere interactions between high- and low-latitude environments. The carbon- and water cycle-associated cross-sphere processes reflected in microbial fingerprints only represent a small portion of Earth sphere interactions. The great contribution of the microbial community in shaping the habitable Earth has yet to be fully deciphered. With research advancement and technical/methodological innovation in geobiology more questions can be addressed, including the interaction between geomicrobiological and deep Earth processes, microbial contribution to the major paleoclimatic shifts and paleoenvironmental changes, and impact of the microbial community on ecological evolution.

关键词

深地科学 / 地球生物学 / 地质微生物学 / 火山活动 / 碳循环 / 水循环 / 全球变化

Key words

deep Earth science / geobiology / geomicrobiology / volcanisms / carbon cycle / water cycle / global change

中图分类号

P511.3;P52;P532

引用本文

导出引用
谢树成 , 朱宗敏 , 张宏斌 , . 小小地质微生物演绎跨圈层的相互作用. 地学前缘. 2024, 31(1): 446-454 https://doi.org/10.13745/j.esf.sf.2023.10.4
Shucheng XIE, Zongmin ZHU, Hongbin ZHANG, et al. Earth sphere interaction reflected in microbial fingerprints through Earth's history—a critical review[J]. Earth Science Frontiers. 2024, 31(1): 446-454 https://doi.org/10.13745/j.esf.sf.2023.10.4

参考文献

[1]
谢树成, 焦念志, 罗根明, 等. 海洋生物碳泵的地质演化: 微生物的碳汇作用[J]. 科学通报, 2022, 67(15): 1715-1726.
[2]
谢树成. 生物圈能在多大程度上影响地球深部圈层[J]. 地球科学, 2022, 47(10): 3815-3817.
[3]
XIE S, PANCOST R D, YIN H, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction[J]. Nature, 2005, 434: 494-497.
[4]
CHEN L, WANG Y, XIE S, et al. Molecular records of microbialites following the end-Permian mass extinction in Chongyang, Hubei Province, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308: 151-159.
[5]
LU Y, HAO F, SHEN J, et al. High-resolution volcanism-induced oceanic environmental change and its impact on organic matter accumulation in the Late Ordovician Upper Yangtze Sea[J]. Marine and Petroleum Geology, 2022, 136: 105482.
[6]
ZHANG R, JIANG T, TIAN Y, et al. Volcanic ash stimulates growth of marine autotrophic and heterotrophic microorganisms[J]. Geology, 2017, 45(8): 679-682.
[7]
JIA C, HUANG J, KERSHAW S, et al. Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction[J]. Geobiology, 2012, 10: 60-71.
[8]
XIE S, PANCOST R D, WANG Y, et al. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450.
[9]
XIE S, PANCOST R D, HUANG J, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis[J]. Geology, 2007, 35(12): 1083-1086.
[10]
KONHAUSER K O, PLANAVSKY N J, HARDISTY D S, et al. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history[J]. Earth-Science Reviews, 2017, 172: 140-177.
[11]
KELLER D S, TASSARA S, ROBBINS L J, et al. Links between large igneous province volcanism and subducted iron formations[J]. Nature Geoscience, 2023, 16(6): 527-533.
[12]
ZHANG S, LI Y, LENG W, et al. Photoferrotrophic bacteria initiated plate tectonics in the Neoarchean[J]. Geophysical Research Letters, 2023, 50: e2023GL103553.
[13]
QIU X, WANG H M, YAO Y C, et al. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52[J]. Earth and Planetary Science Letters, 2017, 472: 197-205.
[14]
LIU D, YU N, PAPINEAU D, et al. The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite Formation: results from lake Jibuhulangtu Nuur, Inner Mongolia, China[J]. Geochimica et Cosmochimica Acta, 2019, 263: 31-49.
[15]
ZEICHNER S S, NGHIEM J, LAMB M P, et al. Early plant organics increased global terrestrial mud deposition through enhanced flocculation[J]. Science, 2021, 371(6528): 526-529.
[16]
ZHANG H, GRIFFITHS M L, CHIANG J C H, et al. East Asian hydroclimate modulated by the position of the westerlies during Termination I[J]. Science, 2018, 362: 580-583.
[17]
LU J, YANG H, GRIFFITHS M L, et al. Asian monsoon evolution linked to Pacific temperature gradients since the Late Miocene[J]. Earth and Planetary Science Letters, 2021, 563: 116882.
[18]
XIE S, EVERSHED R P, HUANG X, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in central China[J]. Geology, 2013, 41(8): 827-830.
[19]
WANG C, BENDLE J A, ZHANG H, et al. Holocene temperature and hydrological changes reconstructed by bacterial 3-hydroxy fatty acids in a stalagmite from central China[J]. Quaternary Science Reviews, 2018, 192: 97-105.
[20]
XIE S, PANCOST R D, CHEN L, et al. Microbial lipid records of highly alkaline deposits and enhanced aridity associated with significant uplift of Tibetan Plateau in late Miocene[J]. Geology, 2012, 40: 291-294.
[21]
TANG C, YANG H, PANCOST R D, et al. Tropical and high latitude forcing of enhanced megadroughts in northern China during the last four terminations[J]. Earth and Planetary Science Letters, 2017, 479: 98-107.
[22]
JIAN Z, WANG Y, DANG H, et al. Warm pool ocean heat content regulates ocean-continent moisture transport[J]. Nature, 2022, 612: 92-99.
[23]
张传伦, 林间, 李三忠, 等. 构造微生物学: 地球生物学研究的新理念[J]. 中国科学: 地球科学, 2018, 48(7): 956-959.
[24]
谢树成, 罗根明, 朱秀昌, 等. “四深”微生物的地质作用: 从气候环境变化到生态灾难[J]. 地质论评, 2022, 68(5): 1575-1583.
[25]
XIE S, ZHU X, ALGEO T, et al. Geovirology: viruses and their roles in geological history[J]. Science Bulletin, 2023, 68: 379-382.

基金

国家自然科学基金重大项目“地质微生物与地球重大环境转型(42293290)

评论

PDF(2996 KB)

Accesses

Citation

Detail

段落导航
相关文章

/