郯庐断裂转换段新沂地裂缝成生机理及构造意义

徐继山, 彭建兵, 隋旺华, 安海波, 李作栋, 徐文杰, 董培杰

PDF(13066 KB)
PDF(13066 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (3) : 470-481. DOI: 10.13745/j.esf.sf.2023.10.36
地质环境与地质工程

郯庐断裂转换段新沂地裂缝成生机理及构造意义

作者信息 +

Formation mechanism and tectonic implication of Xinyi earth fissures in Tan-Lu fault transition section

Author information +
History +

摘要

新沂地区处于郯庐断裂带转换段的关键部位,自20世纪70年代以来在新沂地区共发现地裂缝灾害点28处。这些地裂缝以群发的形式发育在南马陵山以西、沂河—骆马湖以东的区域内,地裂灾害影响区面积达100 km2。新沂地裂缝与地层结构、地震活动、地下水开采等因素有着千丝万缕的联系,对其研究形成了多种观点。利用实地调查与勘探手段,新近查明了新沂地裂缝的基本特征,它们具有走向一致性、纵向尖灭性、局部群发性等特点,且与邻近断裂(郯庐断裂带次级断裂F3)具有高度一致性,属于区域构造控制型地裂缝。以新沂地区地质构造为原型,构建了逆断层作用下地裂缝成生物理试验模型。试验结果表明,随着逆断层断距加大而依次呈剪裂段、离层段、弯裂段等发展过程。结合新沂地区“地堑-地垒-地堑”组合结构,新沂地裂缝的成因机制可概括为“跷跷板”构造模型,在构造应力、自重应力、地下水波动等作用下,下沉段受挤压,上升段因抬升而弯裂,从而形成地裂缝。研究新沂地区地裂缝,对揭示郯庐断裂带“北-中-南”段构造变化和“深-浅-表”部结构联系具有重要的指示意义。

Abstract

The Xinyi area is located in a crucial transitional zone of the Tan-Lu Fault Zone. Since the 1970s, a total of 28 earth fissures have been discovered in this region. These fissures are mainly concentrated in the area west of Nanmaling Mountain and east of Yihe River-Luoma Lake, covering an affected area of approximately 100 km2. The formation of Xinyi earth fissures is closely linked to the stratigraphic structure, seismic activity, and groundwater exploitation, leading to various perspectives on the subject. Recent on-site investigations and exploration methods have revealed the fundamental characteristics of Xinyi earth fissures, including consistent strike, longitudinal pinchout, and localized mass occurrence. These features align closely with the adjacent fault (secondary fault F3 of the Tan-Lu Fault Zone) and are classified as regional tectonic-type earth fissures. Drawing on the geological structure of the Xinyi area, a physical experimental model was developed to simulate the formation of earth fissures under reverse fault action. The experimental findings suggest that fissure development areas are delineated on the ground surface, progressing through stages of shear-cracking, separation, and “bending-cracking” with increasing fault displacement of the reverse fault. Considering the “graben-horst-graben” composite structure in the Xinyi area, the genesis of Xinyi earth fissures can be conceptualized as a seesaw-style tectonic model. Tectonic stress, gravity stress, groundwater fluctuations, among other factors, compress the subsidence section while causing bending and cracking in the rising section, ultimately resulting in the formation of earth fissures. The investigation of earth fissures in the Xinyi area holds significant importance in elucidating structural changes within the “north-middle-south” segment of the Tan-Lu Fault Zone and the interconnected “deep-shallow-surface” structural configurations.

关键词

地裂缝 / 郯庐断裂带 / 地震 / 逆断层 / 构造应力 / 华北板块

Key words

earth fissure / Tan-Lu Fault Zone / earthquake / reverse fault / tectonic stress / North China Plate

中图分类号

P694;P542.3

引用本文

导出引用
徐继山 , 彭建兵 , 隋旺华 , . 郯庐断裂转换段新沂地裂缝成生机理及构造意义. 地学前缘. 2024, 31(3): 470-481 https://doi.org/10.13745/j.esf.sf.2023.10.36
Jishan XU, Jianbing PENG, Wanghua SUI, et al. Formation mechanism and tectonic implication of Xinyi earth fissures in Tan-Lu fault transition section[J]. Earth Science Frontiers. 2024, 31(3): 470-481 https://doi.org/10.13745/j.esf.sf.2023.10.36

参考文献

[1]
HOWARD K W F, ZHOU W F. Overview of ground fissure research in China[J]. Environmental Earth Sciences, 2019, 78(3): 97.
[2]
PENG J B, QIAO J W, SUN X H, et al. Distribution and generative mechanisms of ground fissures in China[J]. Journal of Asian Earth Sciences, 2020, 191: 104218.
[3]
XU J S, PENG J B, DENG Y H, et al. Classification, grading criteria and quantitative expression of earth fissures: a case study in Daming Area, North China Plain[J]. Geomatics, Natural Hazards and Risk, 2018, 9(1): 862-880.
[4]
LEONARD R J. An earth fissure in southern Arizona[J]. The Journal of Geology, 1929, 37(8): 765-774.
[5]
CONWAY B D. Land subsidence and earth fissures in south-central and southern Arizona, USA[J]. Hydrogeology Journal, 2016, 24(3): 649-655.
[6]
HOLZER T L. Implications of ground-deformation measurements across earth fissures in subsidence areas in the southwestern USA[M]//Eighth International symposium on land subsidence. Wallingford: IAHS Publication, 2010: 9-19.
[7]
KEATON J R, RUCKER M L, CHENG S S. Geomechanical analysis of an earth fissure induced by ground-water withdrawal for design of a proposed ash and sludge impoundment, southeastern Arizona[M]//Poland symposium on land subsidence. Sacramento, California: Association of Engineering Geologists, 1995: 217-226.
[8]
RUCKER M L, FERGASON K C, PANDA B B. Subsidence characterization and modeling for engineered facilities in Arizona, USA[C]//Proceedings of the International Association of Hydrological Sciences(IAHS): Prevention and mitigation of natural and anthropogenic hazards due to land subsidence-Ninth International Symposium on Land Subsidence. Nagoya: IAHS, 2015: 59-62.
[9]
LI Y T, TEATINI P, YU J, et al. Aseismic multifissure modeling in unfaulted heavily pumped basins: mechanisms and applications[J]. Water Resources Research, 2021, 57(10): 1-21.
[10]
RUCKER M L, JEFFREY R K. Tracing an Earth fissure using Seismic-Refraction Methods with physical verification[C]//Proceedings of the Dr. Joseph F. Poland symposium on land subsidence. Belmont: Association of Engineering Geologists, Star Publishing Company, 1998: 207-216.
[11]
高中和, 竺清良, 季幼庭, 等. 江苏省地裂缝的分布特征、成因类型及防治对策研究[J]. 地震学刊, 1997, 17(1): 1-10.
[12]
王景明. 地裂缝及其灾害的理论与应用[M]. 西安: 陕西科学技术出版社, 2000: 1-574.
[13]
李昌存. 河北平原地裂缝研究[D]. 北京: 中国地质大学(北京), 2003.
[14]
徐继山. 华北陆缘盆地地裂缝成因机理研究[D]. 西安: 长安大学, 2012.
[15]
赵永福, 祁玉岭. 江苏新沂棋盘地裂缝成因及其危害[J]. 地震学刊, 1991(4): 47-50.
[16]
李起彤, 南金生, 陈晓明, 等. 新沂地裂缝及其地震前兆意义[J]. 地震, 1988, 8(6): 18-23.
[17]
LIU Y, PENG J B, JIANG F Q, et al. Model test study on the formation and development of underground erosion ground fissures in the Kenya Rift Valley[J]. Journal of Mountain Science, 2022, 19(4): 1037-1050.
[18]
LIU N N, FENG X Y, HUANG Q B, et al. Dynamic characteristics of a ground fissure site[J]. Engineering Geology, 2019, 248: 220-229.
[19]
XIONG Z M, ZHANG C, HUO X P, et al. Distributing disciplinarian of ground motion parameters on an earth fissure site during strong earthquakes[J]. Earthquake Engineering and Engineering Vibration, 2020, 19(3): 597-610.
[20]
王小凤, 李中坚, 陈柏林, 等. 郯庐断裂带[M]. 北京: 地质出版社, 2000.
[21]
李开善. 郯庐断裂带构造应力场初步探讨[J]. 中国地质科学院562综合大队集刊, 1987(6): 127-138.
[22]
李法浩, 解国爱, 田荣松, 等. 华北板块东南缘徐淮推覆-褶皱带的物理模拟[J]. 地质通报, 2018, 37(6): 1087-1100.
[23]
SUN F B, PENG P, ZHOU X Q, et al. Provenance analysis of the late Mesoproterozoic to Neoproterozoic Xuhuai Basin in the southeast North China Craton: implications for paleogeographic reconstruction[J]. Precambrian Research, 2020, 337: 105554.
[24]
LAI H Y, LIU L P, LIU X, et al. Unmanned aerial vehicle oblique photography-based superposed fold analysis of outcrops in the Xuhuai region, North China[J]. Geological Journal, 2021, 56(4): 2212-2222.
[25]
LI C B, JIANG R, ZENG J W, et al. Deep structures underneath the Sihong Segment of the Tan-Lu Fault Zone, eastern China: interpretations of gravity anomaly and seismic profiles[J]. Journal of Asian Earth Sciences, 2019, 176: 229-243.
[26]
王先美, 钟大赉, 张进江, 等. 沂沭断裂带晚白垩世—早古新世左行走滑的低温年代学约束[J]. 地质学报, 2007, 81(4): 454-465.
[27]
徐嘉炜. 徐嘉炜论郯庐断裂: 论文选集[M]. 合肥: 合肥工业大学出版社, 2015.
[28]
张鹏, 王良书, 钟锴, 等. 郯庐断裂带的分段性研究[J]. 地质论评, 2007, 53(5): 586-591, 721-722.
[29]
刘保金, 酆少英, 姬计法, 等. 郯庐断裂带中南段的岩石圈精细结构[J]. 地球物理学报, 2015, 58(5): 1610-1621.
[30]
李康. 郯庐断裂带(张渤带以南)地震破裂综合分段研究[D]. 北京: 中国地震局地质研究所, 2016.
[31]
郑祺方, 郑宇舟, 赵睿, 等. 郯庐断裂带南段的重磁场特征及其地质意义[J]. 地学前缘, 2022, 29(3): 292-303.
[32]
孟庆武. 山东苍山5.2级地震活动背景及震前地震活动[J]. 山西地震, 1998, 92(1): 55-60.
[33]
朱成林. 郯庐断裂带沂沭段及周边地区地壳形变特征和地震危险性分析[D]. 北京: 中国地震局, 2020.
[34]
朱艾斓, 徐锡伟, 王鹏, 等. 以精定位背景地震活动与震源机制解研究郯庐断裂带中南段现今活动习性[J]. 地学前缘, 2018, 25(1): 218-226.
[35]
曹筠, 冉勇康, 许汉刚, 等. 郯庐断裂带江苏段安丘—莒县断裂全新世活动及其构造意义[J]. 地球物理学报, 2018, 61(7): 2828-2844.
[36]
刘备, 朱光, 胡红雷, 等. 郯庐断裂带江苏段新构造活动规律分析[J]. 地质学报, 2015, 89(8): 1352-1366.
[37]
TANG C S, ZHU C, CHENG Q, et al. Desiccation cracking of soils: a review of investigation approaches, underlying mechanisms, and influencing factors[J]. Earth-Science Reviews, 2021, 216: 103586.
[38]
CHEN X X, LUO Z J, ZHOU S L. Influences of soil hydraulic and mechanical parameters on land subsidence and ground fissures caused by groundwater exploitation[J]. Journal of Hydrodynamics, 2014, 26(1): 155-164.
[39]
徐继山, 马润勇, 彭建兵, 等. 河间地区地裂缝分形特征研究[J]. 自然灾害学报, 2012, 21(3): 177-183.
[40]
江苏省地质矿产局. 江苏省及上海市区域地质志[M]. 北京: 地质出版社, 1984.
[41]
JANG B, QU Z H, WANG J L, et al. Research on coupling mechanism of mine structure and gas occurrence[J]. Procedia Earth and Planetary Science, 2009, 1(1): 1029-1036.
[42]
熊彩霞, 汪吉林, 宋豪, 等. 徐宿弧形构造带徐州区段节理发育及应力场特征[J]. 地球科学前沿, 2022, 12(6): 804-812.
[43]
ISHIMURA D, IWASA Y, TAKAHASHI N, et al. Paleoseismic events and shallow subsurface structure of the central part of the Futagawa fault, which generated the 2016 Mw 7.0 Kumamoto earthquake[J]. Geomorphology, 2022, 414: 108387.
[44]
LIU K, LI Y G, NAN Y Y, et al. Detailed shallow structure of the seismogenic fault of the 1976 Ms 7.8 Tangshan earthquake, China[J]. Frontiers in Earth Science, 2022, 10: 946972.
[45]
马宝军, 漆家福, 牛树银, 等. 统一应力场中基底断裂对盖层复杂断块变形的影响: 来自砂箱实验的启示[J]. 地学前缘, 2009, 16(4): 105-116.
[46]
LI H O, XU X W, JIANG M. Deep dynamical processes in the central-southern Qinghai-Tibet Plateau: receiver functions and travel-time residuals analysis of North Hi-Climb[J]. Science in China Series D: Earth Sciences, 2008, 51(9): 1297-1305.
[47]
SHEN Z K, ZHAO C K, YIN A, et al. Contemporary crustal deformation in East Asia constrained by Global Positioning System measurements[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B3): 5721-5734.
[48]
HU X P, ZANG A, HEIDBACH O, et al. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 2017, 149: 20-28.
[49]
CHANG L J, WANG C Y, DING Z F. Seismic anisotropy of upper mantle in Eastern China[J]. Science in China Series D: Earth Sciences, 2009, 52(6): 774-783.
[50]
WEI W, XU J D, ZHAO D P, et al. East Asia mantle tomography: new insight into plate subduction and intraplate volcanism[J]. Journal of Asian Earth Sciences, 2012, 60: 88-103.
[51]
WANG H B, ZHANG J J, FAN Y S, et al. Tectonic conversion on the northern margin of the North China Craton in the Early Triassic: constraints from geochronology and petrogenesis of the Datan plutonic complex, middle of Inner Mongolia, China[J]. Lithos, 2021, 388/389: 106038.
[52]
ZHANG J J, ZHAO L, LIU S W, et al. Structures of syn-deformational granites in the longquanguan shear zone and their monazite electronic microprobe dating[J]. Acta Geologica Sinica (English Edition), 2006, 80(6): 864-874.
[53]
LI S Z, ZHAO G C, DAI L M, et al. Cenozoic faulting of the Bohai Bay Basin and its bearing on the destruction of the eastern North China Craton[J]. Journal of Asian Earth Sciences, 2012, 47: 80-93.
[54]
HUANG L, LIU C Y, KUSKY T M. Cenozoic evolution of the Tan-Lu Fault Zone (East China): constraints from seismic data[J]. Gondwana Research, 2015, 28(3): 1079-1095.
[55]
冯志强, 李萌, 郭元岭, 等. 中国典型大型走滑断裂及相关盆地成因研究[J]. 地学前缘, 2022, 29(6): 206-223.
[56]
XU J S, MENG L C, AN H B, et al. The bending mechanism of Anping ground fissure in the Hebei Plain, North China[J]. Environmental Earth Sciences, 2015, 74(9): 6859-6870.

基金

国家自然科学基金项目(42177123)
国家自然科学基金项目(42042054)
国家自然科学基金项目(41302249)
国家自然科学基金项目(42130706)
江苏高校优势学科建设工程资助项目

评论

PDF(13066 KB)

Accesses

Citation

Detail

段落导航
相关文章

/