脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性

吕良华, 乔文静, 张晗, 叶淑君, 吴吉春, 王水, 蒋建东

PDF(2846 KB)
PDF(2846 KB)
地学前缘 ›› 2024, Vol. 31 ›› Issue (2) : 472-480. DOI: 10.13745/j.esf.sf.2022.10.41
非主题来稿选登

脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性

作者信息 +

Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species

Author information +
History +

摘要

1,2,4-三氯苯是我国工业污染场地土壤和地下水中典型的有机污染物,具有持久性、生物蓄积性和高毒性特点,对生态环境和人体健康危害巨大。1,2,4-三氯苯密度比水大,容易迁移至深部厌氧区域,因此,开展1,2,4-三氯苯厌氧微生物降解与修复研究具有重要实际应用价值。本文通过长期富集培养,获得一份可以稳定地将1,2,4-三氯苯还原脱氯至1,4-二氯苯,再进一步还原脱氯至氯苯的厌氧菌液。通过16S rRNA基因扩增子测序及引物特异性的定量PCR实验,证明厚壁菌门的脱卤杆菌属细菌(Dehalobacter species)是1,2,4-三氯苯和1,4-二氯苯厌氧还原脱卤的功能菌株,其生长率为(1.68±0.8)×106 copies·μmol-1(释放的氯离子)。通过PCR扩增,获得Dehalobacter菌株的16S rRNA基因序列,构建了系统发育树。本研究可为1,2,4-三氯苯污染场地开展原位厌氧微生物修复提供菌株资源和理论指导。

Abstract

1,2,4-Trichlorobenzene (TCB) is a typical organic contaminant in soil and groundwater at industrial plant in China. 1,2,4-TCB is recalcitrant, bio-accumulative and highly toxic, posing serious threats to the environment and human health. 1,2,4-TCB is denser than water and easily penetrates into an anaerobic environment. Therefore, understanding the anaerobic biotransformation of 1,2,4-TCB is of great practical significance to on-site remediation. In this study, an anaerobic enrichment culture, which can sustainably dechlorinate 1,2,4-TCB to MCB via 1,4-DCB, is obtained. 16S rRNA gene amplicon sequencing and qPCR demonstrated Dehalobacter is responsible for the observed reductive dechlorination with a growth yield of (1.68±0.8)×106 copies per μmol released Cl-. A complete 16S rRNA gene sequence was obtained through PCR and a corresponding phylogenetic tree was constructed. This study provides a reference for the enrichment culture technique as well as theoretical guidance for the in-situ anaerobic bioremediation of contaminated sites.

关键词

1,2,4-三氯苯 / 地下水污染 / 生物修复 / 脱卤杆菌属 / 还原脱卤

Key words

1,2,4-trichlorobenzene / groundwater contamination / bioremediation / Dehalobacter / reductive dechlorination

中图分类号

X523;X172

引用本文

导出引用
吕良华 , 乔文静 , 张晗 , . 脱卤杆菌介导的厌氧微生物富集菌群对1,2,4-三氯苯的降解特性. 地学前缘. 2024, 31(2): 472-480 https://doi.org/10.13745/j.esf.sf.2022.10.41
Lianghua LÜ, Wenjing QIAO, Han ZHANG, et al. Degradation of 1,2,4-trichlorobenzene by an anaerobic enrichment culture mediated by Dehalobacter species[J]. Earth Science Frontiers. 2024, 31(2): 472-480 https://doi.org/10.13745/j.esf.sf.2022.10.41

参考文献

[1]
朱辉, 叶淑君, 吴吉春, 等. 中国典型有机污染场地土层岩性和污染物特征分析[J]. 地学前缘, 2021, 28(5):26-34.
[2]
刘芷彤, 周妮, 乔文静, 等. 邻硝基对甲基苯酚和邻氨基对甲基苯酚对1, 2, 4-TCB厌氧生物降解影响研究[J]. 地学前缘, 2021, 28(5): 159-166.
[3]
BECK U, LÖSER E. Ullmann’s encyclopedia of industrial chemistry[M]. New York: Wiley, 2000: 2-5.
[4]
DUAN T H, ADRIAN L. Enrichment of hexachlorobenzene and 1, 3, 5-trichlorobenzene transforming bacteria from sediments in Germany and Vietnam[J]. Biodegradation, 2013, 24(4): 513-520.
[5]
OLIVER B G, NICOL K D. Chlorobenzenes in sediments, water, and selected fish from Lakes Superior, Huron, Erie, and Ontario[J]. Environmental Science and Technology, 1982, 16(8): 532-536.
[6]
USEPA. Priority pollutant list[R/OL]. 2014[2022-9-6]. https://www.epa.gov/sites/default/files/2015-09/documents/priority-pollutant-list-epa.pdf.
[7]
VIDALI M. Bioremediation. An overview[J]. Pure and Applied Chemistry, 2001, 73(7): 1163-1172.
[8]
YOSHIKAWA M, ZHANG M, TOYOTA K. Integrated anaerobic-aerobic biodegradation of multiple contaminants including chlorinated ethylenes, benzene, toluene, and dichloromethane[J]. Water, Air, and Soil Pollution, 2017, 228(1): 25.
[9]
熊贵耀, 吴吉春, 杨蕴, 等. 有机污染土壤-地下水系统中的微生物场及多场耦合研究[J]. 地学前缘, 2022, 29(3): 189-199.
[10]
ADRIAN L, LOEFFLER F E. Organohalide respiring bacteria[M]. Berlin: Springer, 2016: 3-6.
[11]
崔逸儒, 杨毅, 严俊, 等. 脱卤单胞菌属在厌氧降解有机氯化物及污染场地修复应用中的研究进展[J]. 生物工程学报, 2021, 37(10): 3565-3577.
[12]
MOLENDA O, TANG S Q, LOMHEIM L, et al. Extrachromosomal circular elements targeted by CRISPR-Cas in Dehalococcoides mccartyi are linked to mobilization of reductive dehalogenase genes[J]. The ISME Journal, 2019, 13(1): 24-38.
[13]
WANG S Q, CHNG K R, WILM A, et al. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(33): 12103-12108.
[14]
YAN J, BI M, BOURDON A K, et al. Purinyl-cobamide is a native prosthetic group of reductive dehalogenases[J]. Nature Chemical Biology, 2018, 14(1): 8-14.
[15]
YANG Y, HIGGINS S A, YAN J, et al. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes[J]. The ISME Journal, 2017, 11(12): 2767-2780.
[16]
杨毅, 张耀之, 李秀颖, 等. 脱卤球菌纲(Dehalococcodia Class)在有机卤化物生物地球化学循环中的作用[J]. 环境科学学报, 2019, 39(10): 3207-3214.
[17]
QIAO W J, LIU G P, LI M Y, et al. Complete reductive dechlorination of 4-hydroxy-chlorothalonil by dehalogenimonas populations[J]. Environmental Science and Technology, 2022, 56(17): 12237-12246.
[18]
FENNELL D E, NIJENHUIS I, WILSON S F, et al. Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants[J]. Environmental Science and Technology, 2004, 38(7): 2075-2081.
[19]
LÖFFLER F E, YAN J, RITALAHTI K M, et al. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the Phylum Chloroflexi[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(Pt 2): 625-635.
[20]
ADRIAN L, SZEWZYK U, WECKE J, et al. Bacterial dehalorespiration with chlorinated benzenes[J]. Nature, 2000, 408(6812): 580-583.
[21]
HÖLSCHER T, GÖRISCH H, ADRIAN L. Reductive dehalogenation of chlorobenzene congeners in cell extracts of Dehalococcoides sp. strain CBDB1[J]. Applied and Environmental Microbiology, 2003, 69(5): 2999-3001.
[22]
JAYACHANDRAN G, GÖRISCH H, ADRIAN L. Dehalorespiration with hexachlorobenzene and pentachlorobenzene by Dehalococcoides sp. strain CBDB1[J]. Archives of Microbiology, 2003, 180(6): 411-416.
[23]
PÖRITZ M, SCHIFFMANN C L, HAUSE G, et al. Dehalococcoides mccartyi strain DCMB5 respires a broad spectrum of chlorinated aromatic compounds[J]. Applied and Environmental Microbiology, 2015, 81(2): 587-596.
[24]
WU Q Z, MILLIKEN C E, MEIER G P, et al. Dechlorination of chlorobenzenes by a culture containing bacterium DF-1, a PCB dechlorinating microorganism[J]. Environmental Science and Technology, 2002, 36(15): 3290-3294.
[25]
QIAO W J, LUO F, LOMHEIM L, et al. A dehalogenimonas population respires 1, 2, 4-trichlorobenzene and dichlorobenzenes[J]. Environmental Science and Technology, 2018, 52(22): 13391-13398.
[26]
QIAO W J, LUO F, LOMHEIM L, et al. Natural attenuation and anaerobic benzene detoxification processes at a chlorobenzene-contaminated industrial site inferred from field investigations and microcosm studies[J]. Environmental Science and Technology, 2018, 52(1): 22-31.
[27]
LÖFFLER F E, SANFORD R A, RITALAHTI K M. Enrichment, cultivation, and detection of reductively dechlorinating bacteria[J]. Methods in Enzymology, 2005, 397: 77-111.
[28]
RITALAHTI K M, AMOS B K, SUNG Y, et al. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains[J]. Applied and Environmental Microbiology, 2006, 72(4): 2765-2774.
[29]
JUSTICIA-LEON S D, HIGGINS S, MACK E E, et al. Bioaugmentation with distinct Dehalobacter strains achieves chloroform detoxification in microcosms[J]. Environmental Science and Technology, 2014, 48(3): 1851-1858.
[30]
PUENTES JÁCOME L A, EDWARDS E A. A switch of chlorinated substrate causes emergence of a previously undetected native Dehalobacter population in an established Dehalococcoides-dominated chloroethene-dechlorinating enrichment culture[J]. FEMS Microbiology Ecology, 2017, 93(12): 4569067.
[31]
FUNG J M, WEISENSTEIN B P, MACK E E, et al. Reductive dehalogenation of dichlorobenzenes and monochlorobenzene to benzene in microcosms[J]. Environmental Science and Technology, 2009, 43(7): 2302-2307.
[32]
叶杰旭, 林彤晖, 骆煜昊, 等. 1株氯苯高效降解菌的分离鉴定及降解特性[J]. 环境科学, 2017, 38(2): 802-808.
[33]
KURT Z, SPAIN J C. Biodegradation of chlorobenzene, 1, 2-dichlorobenzene, and 1, 4-dichlorobenzene in the vadose zone[J]. Environmental Science and Technology, 2013, 47(13): 6846-6854.
[34]
DUHAMEL M, EDWARDS E A. Growth and yields of dechlorinators, acetogens, and methanogens during reductive dechlorination of chlorinated ethenes and dihaloelimination of 1, 2-dichloroethane[J]. Environmental Science and Technology, 2007, 41(7): 2303-2310.
[35]
李晓翠, 李秀颖, 宋玉芳, 等. 有机卤呼吸微生物菌群营养交互的作用机制[J]. 微生物学报, 2022, 62(6): 2226-2248.
[36]
HUG L A, BEIKO R G, ROWE A R, et al. Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community[J]. BMC Genomics, 2012, 13: 327.
[37]
NELSON J L, JIANG J D, ZINDER S H. Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp.[J]. Environmental Science and Technology, 2014, 48(7): 3776-3782.
[38]
冯思玲. 系统发育树构建方法研究[J]. 信息技术, 2009, 33(6): 38-40, 44.

脚注

基金

国家重点研发计划项目(2018YFC1802501)
国家自然科学基金项目(42007214)
国家自然科学基金项目(42077174)
中国博士后科学基金项目(2021M691614)
江苏省“双创博士”(JSSCBS20210278)
江苏省“333高层次人才培养工程”科研项目(680803125)
江苏省卓越博士后计划项目(2023ZB141)
江苏省地下水环境状况调查项目

评论

PDF(2846 KB)

Accesses

Citation

Detail

段落导航
相关文章

/