宋建辉, 李亚洲, 刘砚菊, 刘晓阳
沈阳理工大学学报.
2024, 43(03):
10-17.
为解决医疗看护环境下桌面生活物品检测效果不佳、定位误差较大的问题,提出一种基于YOLOv5的改进模型。首先,在主干网络末端使用坐标注意力(coordinate attention, CA)机制,使算法能够捕获跨通道、跨方向和位置的信息,提高算法的识别精度;然后,引入GhostConv卷积减少模型参数量,使模型更加轻量化,提高检测速度;最后,使用SIoU替换原算法的定位损失函数,使定位损失计算考虑到真实框与预测框的方向差异,有助于提升模型的稳定性。在COCO数据集部分物品种类上进行多次对比实验,结果表明,与原算法相比较,改进算法的精确率和召回率分别提高了4.1%和1.3%,在交并比为0%~50%和50%~90%时的均值平均精度分别提高了2.7%和3.9%,参数量减少了16.9%,每秒传输帧数提高了0.47帧,平均定位误差在X轴方向上减小了0.29 mm、在Y轴方向上减小了0.14 mm。