基于鸟瞰视图的递归特征金字塔语义分割方法

高宏伟, 赵博杨

PDF(1146 KB)
PDF(1146 KB)
沈阳理工大学学报 ›› 2024, Vol. 43 ›› Issue (03) : 33-39+47.

基于鸟瞰视图的递归特征金字塔语义分割方法

  • 高宏伟, 赵博杨
作者信息 +
History +

摘要

针对现有自动驾驶场景的鸟瞰视图(BEV)语义分割方法的特征提取效果差、视角转换方法老旧以及交通环境语义分割效果不佳的问题,提出一种基于鸟瞰视图的递归金字塔的语义分割方法,简称为IRFPN。传统金字塔特征提取网络包含自底向上、自顶向下以及横向链接三部分,特征提取效果有待提高。鸟瞰视角转换方面只使用传统的逆透视变换处理车载相机拍摄的图片,不能对相关语义进行很好的保留。为改善上述不足,将递归特征金字塔结构和极射线映射相结合。实验结果表明,IRFPN在nuScenes数据集中常见类别语义分割精度提升了0.4%,对驾驶区域的预测精度提升了2.1%,相比传统的金字塔特征提取网络效果好,对各常见交通环境语义特征有更好的保留,对复杂的交通环境具有较好的鲁棒性。

关键词

递归特征金字塔 / 特征提取 / 鸟瞰视图 / 语义分割 / 自动驾驶 / 极射线映射

中图分类号

TP391.41 / U495

引用本文

导出引用
高宏伟, 赵博杨. 基于鸟瞰视图的递归特征金字塔语义分割方法. 沈阳理工大学学报. 2024, 43(03): 33-39+47

基金

辽宁省科学技术计划(机器人学国家重点实验室联合开放基金)项目(2021-KF-12-05)

评论

PDF(1146 KB)

Accesses

Citation

Detail

段落导航
相关文章

/