
Detection of Soluble Solids Content in Blueberries Based on Hyperspectral Image and Spectrum Fusion
SUN Xiaoxiong, LIU Dayang, ZHU Liangkuan
Detection of Soluble Solids Content in Blueberries Based on Hyperspectral Image and Spectrum Fusion
Soluble solids content (SSC) is a key indicator for assessing the internal quality of fruits. This study proposes a non-destructive detection method based on hyperspectral image fusion to predict the SSC of blueberries. Three widely used wavelength dimensionality reduction algorithms are employed:Monte Carlo uninformative variable elimination (MC-UVE), Competitive Adaptive Reweighted Sampling (CARS), and Successive Projections Algorithm (SPA), to identify optimal wavelengths. Additionally, a strategy integrating Local Binary Patterns (LBP) and Gray Level Co-occurrence Matrix (GLCM) is proposed for feature extraction. Using spectral features, image features, and fused features, Partial Least Squares (PLS), Backpropagation Neural Network (BPNN), and Support Vector Machine (SVM) models are developed for SSC prediction. The results demonstrate that the BPNN model, utilizing spectral features extracted via the CARS algorithm and image features derived from the LBP+GLCM algorithm, yields the highest prediction accuracy. The model's coefficient of determination (R ) is 0.926 1, while the Root Mean Square Error of Prediction (RMSEP) is 0.364 1. This study indicates that hyperspectral image fusion technology holds significant potential for the non-destructive prediction of blueberry SSC.
Soluble solid content / non-destructive assessment / information fusion / feature extraction / machine learning
1 |
|
2 |
|
3 |
|
4 |
张立秀,张淑娟,孙海霞,等.高光谱结合离散二进制粒子群算法对久保桃可溶性固形物含量的检测[J].光谱学与光谱分析,2024,44(3):656-662.
|
5 |
常洪娟,蒙庆华,吴哲锋,等.基于反向传播神经网络和高光谱成像的芒果可溶性固形物含量检测[J].食品安全质量检测学报,2024,15(2):141-148.
|
6 |
|
7 |
|
8 |
李斌,韩昭洋,王秋,等.基于高光谱成像技术的枇杷碰伤等级检测研究[J].光谱学与光谱分析,2023,43(6):1792-1799.
|
9 |
蒋大鹏,高礼彬,陈金浩,等.木材抗拉强度的近红外光谱MC-UVE-IVSO建模方法[J].光谱学与光谱分析,2023,43(8):2488-2493.
|
10 |
路皓翔,张静,李灵巧,等.最小角回归结合竞争性自适应重加权采样的近红外光谱波长选择[J].光谱学与光谱分析,2021,41(6):1782-1788.
|
11 |
宋子怡,常庆瑞,郑智康,等.基于高光谱和连续投影算法的猕猴桃叶片氮平衡指数的估测[J].江苏农业学报,2024,40(7):1260-1267.
|
12 |
赵玉清,贾奥莹,王天允,等.基于机器学习的缺陷咖啡生豆检测[J].自动化应用,2024,65(11):1-6.
|
13 |
陈洋,陈孝敬,石文,等.基于激光散斑的食品包装缺陷检测[J].激光与光电子学进展,2025,62(6):1-15.
|
14 |
张燕,贾阳,杜涓,等.偏最小二乘法和近红外光谱技术快速测定发酵黄芪茎叶中黄酮含量及抗氧化活性[J].饲料研究,2024,47(18):70-75.
|
15 |
邱腾煌,钱玉宝,季威.基于GA-BPNN混合智能模型的钻速预测[J].电子测量技术,2024,47(15):177-186.
|
16 |
房孝猛,王华来,徐晖,等.基于SVM与近红外TDLAS技术的多组分痕量气体识别与检测[J].光谱学与光谱分析,2024,44(10):2909-2915.
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
/
〈 |
|
〉 |