
冻结法施工中围岩的冻胀应力、冻胀应变和冻胀潜势
张帅伟, 李顺群, 陈立航, 闫心怡, 张丙坤, 杨长松, 冯洪川
冻结法施工中围岩的冻胀应力、冻胀应变和冻胀潜势
Freezing method construction of surrounding rock freezing expansion stress freezing expansion strain and freezing expansion potential
为预测和控制冻结法施工中围岩的冻胀行为,依据弹塑性体在具有膨胀趋势时可蓄积变形能的理论,分析具有膨胀趋势受约束的冻土具有该类变形能,并在约束不足或解除时表现为冻胀应力和冻胀应变。为此,在弹性变形能理论基础上,提出冻胀潜势的概念及其表述。该概念以冻胀应力和冻胀应变函数为参数,表征围岩因冻结而蓄积在土体中的变形能。并在此基础上,对某地铁沿线的粉质黏土进行系列冻胀试验。经计算得到了不同温度时的冻胀应力、冻胀应变,当冻结温度为-10 ℃时,冻胀应力、冻胀应变和冻胀率分别为0.338 MPa、0.446%、3.13%,计算结果与工程实际需求基本吻合。冻胀潜势可用来描述岩土体的整体冻胀行为,也对丰富和发展冻土理论和冻结法技术提供新的思路和途径。
To predict and control the frost heave behavior of surrounding rock in freezing construction, based on the theory of accumulated deformation energy in elastoplastic materials with expansion tendencies, this study analyzed that frozen soil with expansion tendencies under constraints possessed such deformation energy, which manifested as frost heave stress and frost heave strain when the constraints were insufficient or released. Therefore, this paper proposed the concept and expression of frost heave potential on the basis of the theory of elastic deformation energy. This concept, with frost heave stress and frost heave strain functions as parameters, represented the deformation energy accumulated in the soil due to freezing of the surrounding rock. Based on this, a series of frost heave tests were conducted on silty clay along a subway line. Calculations yielded frost heave stress and frost heave strain at different temperatures. When the freezing temperature was -10 ℃, the frost heave stress, frost heave strain, and frost heave rate were 0.338 MPa, 0.446%, and 3.13%, respectively. The calculated results were in good agreement with the actual engineering requirements. Frost heave potential can be used to describe the overall frost heave behavior of rock and soil masses and provides a new perspective and approach for enriching and developing frozen soil theory and freezing method technology.
冻结法施工 / 冻胀应力 / 冻胀应变 / 冻胀潜势 / 冻胀率
Freezing method construction / frost heave stress / frost heave strain / frost heave potential / frost heave rate
TU94 / TU445
1 |
陈湘生.地层冻结法[M].北京:人民交通出版社,2013.
|
2 |
董新平,于少辉,张毅豪,等.地铁联络通道冻结法施工中涌水成因及防治[J].地下空间与工程学报,2022,18(1):322-329,340.
|
3 |
鲁先龙,陈湘生,陈曦.人工地层冻结法风险预控[J].岩土工程学报,2021,43(12):2308-2314.
|
4 |
胡俊,刘勇,曾晖.新型管幕冻结法不同管幕填充形式的温度场数值对比分析[J].森林工程,2015,31(6):135-141,145.
|
5 |
蔡海兵,彭立敏,郑腾龙.隧道水平冻结施工引起地表冻胀的历时预测模型[J].岩土力学,2012,33(6):1761-1768.
|
6 |
蔡海兵,程桦,姚直书,等.基于冻土正交各向异性冻胀变形的隧道冻结期地层位移数值分析[J].岩石力学与工程学报,2015,34(8):1667-1676.
|
7 |
|
8 |
吴东军,朱杰,李锐阳.人工冻结深厚表土冻胀特性及水热迁移的试验研究[J].煤炭技术,2018,37(5):49-52.
|
9 |
|
10 |
崔宏环,闫子麟,何静云,等.季冻区粉质黏土路基的冻胀特性的模型试验研究[J].科学技术与工程,2020,20(2):814-820.
|
11 |
董建华,吴晓磊,师利君.不同冻胀模式下冻结隧道施工引起的地表竖向位移时空解[J].中国公路学报,2020,10(17):1-12.
|
12 |
王思文,姜国辉,李玉清,等.不同系统单向冻结条件下土体冻胀率与冻结速率分析[J].水电能源科学,2021,39(10):164-167.
|
13 |
侯兆领.压实度及含水率对盐渍土冻胀规律影响试验研究[J].公路,2023,68(3):316-320.
|
14 |
杨平,王岩梓,刁鹏程.上覆荷载对重塑粉质黏土补水冻胀特性影响[J].郑州大学学报(工学版),2022,43(6):83-89.
|
15 |
刘振亚,刘建坤,李旭,等.毛细黏聚与冰胶结作用对非饱和粉质黏土冻结强度及变形特性的影响[J].岩石力学与工程学报,2018,37(6):1551-1559.
|
16 |
曹善鹏,夏才初,周舒威,等.考虑寒区隧道围岩冻结温度渐变的冻胀力解析解[J].同济大学学报(自然科学版),2024,52(3):360-369.
|
17 |
张帅伟,李顺群,程学磊,等.基于荷载结构法的冻结壁内力与变形研究[J].建井技术,2024,45(2):90-94.
|
18 |
中华人民共和国住房和城乡建设部. GB/T 50123—2019 土工试验方法标准 [S].北京:中国建筑工业出版社,2019.
Ministry of Housingand Urban-Rural Development of the People's Republic of China. GB/T 50123—2019,standard for geotechnical testing method [S].Beijing:China Architecture& Building Press,2019.
|
19 |
李寒.滨海人工冻土压折力学特性及影响因素分析[D].福州:福建工程学院,2024.
|
20 |
张雅琴,杨平,江汪洋,等.粉质黏土冻土三轴强度及本构模型研究[J].土木工程学报,2019,52(S1):8-15.
|
/
〈 |
|
〉 |