基于高光谱图谱融合的蓝莓可溶性固形物含量检测

孙枭雄, 刘大洋, 朱良宽

PDF(2653 KB)
PDF(2653 KB)
森林工程 ›› 2025, Vol. 41 ›› Issue (03) : 603-613. DOI: 10.7525/j.issn.1006-8023.2025.03.017
森工技术与装备

基于高光谱图谱融合的蓝莓可溶性固形物含量检测

作者信息 +

Detection of Soluble Solids Content in Blueberries Based on Hyperspectral Image and Spectrum Fusion

Author information +
History +

摘要

可溶性固形物含量(soluble solids content,SSC)是衡量水果内部质量的重要指标,为此,提出一种基于高光谱图谱融合的无损检测方法,用于预测蓝莓的SSC。采用3种典型的波长降维算法,包括蒙特卡罗无信息变量消除(monte carlo uninformative variable elimination,MC-UVE)、竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)和连续投影算法(successive projections algorithm,SPA),用于筛选有效波长。此外,提出一种结合局部二值模式(local binary patterns,LBP)和灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取图像特征的策略。基于光谱特征、图像特征和融合特征,分别建立偏最小二乘(partial least squares,PLS)、反向传播神经网络(back propagation neural network,BPNN)和支持向量机(support vector machine,SVM)模型进行SSC预测。研究结果表明,利用CARS算法提取的光谱特征融合LBP+GLCM算法提取的图像特征建立的BPNN模型,具有最佳的预测精度。该模型的决定系数(R 2)为0.926 1,均方根误差(root mean square error of prediction,RMSEP)为0.364 1。该研究表明高光谱图谱融合技术在无损预测蓝莓SSC中具有较大应用潜力。

Abstract

Soluble solids content (SSC) is a key indicator for assessing the internal quality of fruits. This study proposes a non-destructive detection method based on hyperspectral image fusion to predict the SSC of blueberries. Three widely used wavelength dimensionality reduction algorithms are employed:Monte Carlo uninformative variable elimination (MC-UVE), Competitive Adaptive Reweighted Sampling (CARS), and Successive Projections Algorithm (SPA), to identify optimal wavelengths. Additionally, a strategy integrating Local Binary Patterns (LBP) and Gray Level Co-occurrence Matrix (GLCM) is proposed for feature extraction. Using spectral features, image features, and fused features, Partial Least Squares (PLS), Backpropagation Neural Network (BPNN), and Support Vector Machine (SVM) models are developed for SSC prediction. The results demonstrate that the BPNN model, utilizing spectral features extracted via the CARS algorithm and image features derived from the LBP+GLCM algorithm, yields the highest prediction accuracy. The model's coefficient of determination (R p 2) is 0.926 1, while the Root Mean Square Error of Prediction (RMSEP) is 0.364 1. This study indicates that hyperspectral image fusion technology holds significant potential for the non-destructive prediction of blueberry SSC.

关键词

可溶性固形物含量 / 无损检测 / 信息融合 / 特征提取 / 机器学习

Key words

Soluble solid content / non-destructive assessment / information fusion / feature extraction / machine learning

中图分类号

TS255.7 / O439 / TP183

引用本文

导出引用
孙枭雄 , 刘大洋 , 朱良宽. 基于高光谱图谱融合的蓝莓可溶性固形物含量检测. 森林工程. 2025, 41(03): 603-613 https://doi.org/10.7525/j.issn.1006-8023.2025.03.017
SUN Xiaoxiong, LIU Dayang, ZHU Liangkuan. Detection of Soluble Solids Content in Blueberries Based on Hyperspectral Image and Spectrum Fusion[J]. Forest Engineering. 2025, 41(03): 603-613 https://doi.org/10.7525/j.issn.1006-8023.2025.03.017

参考文献

1
CHEN Y H HUNG Y C CHEN M Y,et al. Enhanced storability of blueberries by acidic electrolyzed oxidizing water application may be mediated by regulating ROS metabolism[J].Food Chemistry2019270:229-235.
2
QIAO S C TIAN Y W WANG Q H,et al.Nondestructive detection of decayed blueberry based on information fusion of hyperspectral imaging (HSI) and low-field nuclear magnetic resonance(LF-NMR)[J].Computers and Electronics in Agriculture2021184:106100.
3
LI J L SUN D W CHENG J H.Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits:A review[J].Comprehensive Reviews in Food Science and Food Safety201615(5):897-911.
4
张立秀,张淑娟,孙海霞,等.高光谱结合离散二进制粒子群算法对久保桃可溶性固形物含量的检测[J].光谱学与光谱分析202444(3):656-662.
ZHANG L X ZHANG S J SUN H X,et al.Determination of soluble solid content in peach based on hyperspectral combination with BPSO[J].Spectroscopy and Spectral Analysis202444(3):656-662.
5
常洪娟,蒙庆华,吴哲锋,等.基于反向传播神经网络和高光谱成像的芒果可溶性固形物含量检测[J].食品安全质量检测学报202415(2):141-148.
CHANG H J MENG Q H WU Z F,et al.Detection of soluble solids content in mango based on backpropagation algorithm neural network and hyperspectral imaging[J].Journal of Food Safety and Quality202415(2):141-148.
6
QIAO S C TIAN Y W GU W J,et al.Research on simultaneous detection of SSC and FI of blueberry based on hyperspectral imaging combined MS-SPA[J].Engineering in Agriculture,Environment and Food201912(4):540-547.
7
GAO S XU J H.Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes[J].Computers and Electronics in Agriculture2022196:106822.
8
李斌,韩昭洋,王秋,等.基于高光谱成像技术的枇杷碰伤等级检测研究[J].光谱学与光谱分析202343(6):1792-1799.
LI B HAN Z Y WANG Q,et al.Research on bruise level detection of loquat based on hyperspectral imaging technology[J].Spectroscopy and Spectral Analysis202343(6):1792-1799.
9
蒋大鹏,高礼彬,陈金浩,等.木材抗拉强度的近红外光谱MC-UVE-IVSO建模方法[J].光谱学与光谱分析202343(8):2488-2493.
JIANG D P GAO L B CHEN J H,et al.Near infrared spectroscopy modeling method of wood tensile strength based on MC-UVE-IVSO[J].Spectroscopy and Spectral Analysis202343(8):2488-2493.
10
路皓翔,张静,李灵巧,等.最小角回归结合竞争性自适应重加权采样的近红外光谱波长选择[J].光谱学与光谱分析202141(6):1782-1788.
LU H X ZHANG J LI L Q,et al.Least angle regression combined with competitive adaptive re-weighted sampling for NIR spectral wavelength selection[J].Spectroscopy and Spectral Analysis202141(6):1782-1788.
11
宋子怡,常庆瑞,郑智康,等.基于高光谱和连续投影算法的猕猴桃叶片氮平衡指数的估测[J].江苏农业学报202440(7):1260-1267.
SONG Z Y CHANG Q R ZHENG Z K,et al.Estimation of kiwifruit leaf nitrogen balance index based on hyperspectral and successive projections algorithm[J].Jiangsu Journal of Agricultural Sciences202440(7):1260-1267.
12
赵玉清,贾奥莹,王天允,等.基于机器学习的缺陷咖啡生豆检测[J].自动化应用202465(11):1-6.
ZHAO Y Q JIA A Y WANG T Y,et al.Detection of defective green coffee beans based on machine learning[J].Automation Application202465(11):1-6.
13
陈洋,陈孝敬,石文,等.基于激光散斑的食品包装缺陷检测[J].激光与光电子学进展202562(6):1-15.
CHEN Y CHEN X J SHI W,et al.Detection of food packaging defects based on laser speckle[J].Laser & Optoelectronics Progress202562(6):1-15.
14
张燕,贾阳,杜涓,等.偏最小二乘法和近红外光谱技术快速测定发酵黄芪茎叶中黄酮含量及抗氧化活性[J].饲料研究202447(18):70-75.
ZHANG Y JIA Y DU J,et al.Rapid determination of flavonoids and antioxidant activity of fermented Astragalus membranaceus stems and leaves by partial least square method and near infrared spectroscopy technique[J].Feed Research202447(18):70-75.
15
邱腾煌,钱玉宝,季威.基于GA-BPNN混合智能模型的钻速预测[J].电子测量技术202447(15):177-186.
QIU T H QIAN Y B JI W.Drilling rate prediction based on GA-BPNN hybrid intelligent model[J].Electronic Measurement Technology202447(15):177-186.
16
房孝猛,王华来,徐晖,等.基于SVM与近红外TDLAS技术的多组分痕量气体识别与检测[J].光谱学与光谱分析202444(10):2909-2915.
FANG X M WANG H L XU H,et al.Identification and detection of multi-component trace gases based on near-infrared TDLAS technology based on SVM[J].Spectroscopy and Spectral Analysis202444(10):2909-2915.
17
YU K Q ZHAO Y R LIU Z Y,et al.Application of visible and near-infrared hyperspectral imaging for detection of defective features in loquat[J].Food and Bioprocess Technology20147(11):3077-3087.
18
HE X M FU X P RAO X Q,et al.Assessing firmness and SSC of pears based on absorption and scattering properties using an automatic integrating sphere system from 400 to 1150 nm[J].Postharvest Biology and Technology2016121:62-70.
19
XUE J X ZHANG S J SUN H X,et al.Detection of shelf life of Malus asiatica using near-infrared spectroscopy and softening index[J].Transactions of the Chinese Society for Agricultural Machinery201344(8):169-173.
20
LIU F HE Y WANG L.Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy[J].Analytica Chimica Acta2008610(2):196-204.
21
BALABIN R M SMIRNOV S V.Variable selection in near-infrared spectroscopy:Benchmarking of feature selection methods on biodiesel data[J].Analytica Chimica Acta2011692(1/2):63-72.
22
COSTA R C DE LIMA K M G.Prediction of parameters (soluble solid and pH) in intact plum using NIR spectroscopy and wavelength selection[J].Journal of the Brazilian Chemical Society201324(8):1351-1356.
23
ZHANG D Y XU Y F HUANG W Q,et al.Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm[J].Infrared Physics & Technology201998:297-304.
24
ZHANG C GUO C T LIU F,et al.Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine[J].Journal of Food Engineering2016179:11-18.
25
PAN T T CHYNGYZ E SUN D W,et al.Pathogenetic process monitoring and early detection of pear black spot disease caused by Alternaria alternata using hyperspectral imaging[J].Postharvest Biology and Technology2019154:96-104.
26
RICCIOLI C PÉREZ-MARÍN D GARRIDO-VARO A.Optimizing spatial data reduction in hyperspectral imaging for the prediction of quality parameters in intact oranges[J].Postharvest Biology and Technology2021176:111504.

基金

国家自然科学基金项目(32202147)
黑龙江省博士后科研基金项目(LBH-Q13007)

评论

PDF(2653 KB)

Accesses

Citation

Detail

段落导航
相关文章

/