
融合哨兵2号时序特征与连续变化检测分类算法的优势树种识别
陈丹, 李晶, 霍江润, 马天跃, 闫星光, 李雨霏
融合哨兵2号时序特征与连续变化检测分类算法的优势树种识别
Integration of Sentinel-2 Temporal Features and Continuous Change Detection Classification Algorithm for Dominant Tree Species Identification
优势树种识别是林业资源调查的重要组成部分,提高优势树种识别精度对开展森林资源调查和相关研究具有重要现实意义。采用GEE(Google Earth Engine)云平台获取霍东矿区2023年1~12月哨兵2号(Sentinel-2)时间序列影像,基于连续变化检测分类算法(continuous change detection and classification,CCDC)算法及归一化退化指数(normalized difference fraction index,NDFI)构建树种的年内生长轨迹特征,提出一种结合树种“轨迹特征+光谱特征+纹理特征”的长时序遥感影像的优势树种分层识别方法,通过设置对照组“光谱特征+纹理特征”,运用分层分类和随机森林分类算法对霍东矿区油松、辽东栎、白桦、华北落叶松、侧柏、山杨、其他杨树7种优势树种进行识别。结果表明,1)通过NDFI指数可以很好地将落叶林和常绿林区分开来;2)基于“轨迹特征+光谱特征+纹理特征”的优势树种识别效果较好,总体精度可达79.6%,Kappa系数为0.742,比对照组的总体精度高出7.3%。
The identification of dominant tree species is an important part of forestry resource surveys. Improving the accuracy of dominant tree species identification has significant practical implications for conducting forest resource surveys and related research. Using the Google Earth Engine (GEE) cloud platform, we obtained Sentinel-2 time series images for the Huodong mining area from January to December 2023. The annual growth trajectory features of dominant tree species were constructed based on the CCDC algorithm and the NDFI index. A dominant tree species hierarchical identification method combining "trajectory features + spectral features + texture features" of long-time series remote sensing images was proposed. A control group of "spectral features + texture features" was set up, and hierarchical classification and random forest classification algorithms were used to identify 7 dominant tree species (Pinus tabuliformis, Quercus wutaishansea, Betula playphylla, Larix principis-rupprechtii, Platycladus orientalis, Populus davidiana, and poplars spp.) in the Huodong mining area. The results showed that:1) The NDFI index can effectively distinguish between deciduous forests and evergreen forests; 2) The dominant tree species identification based on "trajectory features + spectral features + texture features" performed well, with an overall classification accuracy of 79.6% and a Kappa coefficient of 0.742 in the study area, which was 7.3% higher than the control group.
优势树种识别 / GEE / 时序轨迹特征 / 归一化退化指数 / CCDC算法 / 时间谐波分析
Dominant tree species identification / GEE / temporal trajectory features / normalized disturbance index / CCDC algorithm / time series harmonic analysis
S771.8
1 |
万杰,汪长城,朱建军,等.层析SAR三维成像方法与森林参数反演研究进展[J].遥感学报,2024,28(3):576-590.
|
2 |
梁锦涛,陈超,孙伟伟,等.长时序Landsat和GEE云平台的杭州湾土地利用/覆被变化时空格局演变[J].遥感学报,2023,27(6):1480-1495.
|
3 |
王璐,范文义.基于高光谱遥感数据的森林优势树种组识别[J].东北林业大学学报,2015,43(5):134-137.
|
4 |
梁顺林,白瑞,陈晓娜,等.2019年中国陆表定量遥感发展综述[J].遥感学报,2020,24(6):618-671.
|
5 |
|
6 |
于航,谭炳香,沈明潭,等.基于机器学习算法的机载高光谱图像优势树种识别[J].自然资源遥感,2024,36(1):118-127.
|
7 |
|
8 |
岳巍,李世明,李增元,等.基于多时相Sentinel-2影像和SNIC分割算法的优势树种识别[J].林业科学,2022,58(9):60-69.
|
9 |
|
10 |
肖庆琳,张加龙,曹军,等.耦合多特征多时相的普洱市优势树种分类研究[J].森林工程,2024,40(2):117-126.
|
11 |
郑奕,王瑶,刘艳.基于高光谱数据季相特征的山地草甸植被分类识别[J].光谱学与光谱分析,2022,42(6):1939-1947.
|
12 |
李晶,闫星光,闫萧萧,等.基于GEE云平台的黄河流域植被覆盖度时空变化特征[J].煤炭学报,2021,46(5):1439-1450.
|
13 |
梁爽,宫兆宁,赵文吉,等.基于多季相Sentinel-2影像的白洋淀湿地信息提取[J].遥感技术与应用,2021,36(4):777-790.
|
14 |
邵春晨,杨刚,孙伟伟,等.基于高光谱卫星影像的生长期互花米草指数构建[J].遥感学报,2024,28(3):635-648.
|
15 |
张旭辉,玉素甫江·如素力,仇忠丽,等.基于Sentinel-2时序数据的新疆焉耆盆地农作物遥感识别与评估[J].干旱区地理,2024,47(4):672-683.
|
16 |
刘畅,王岩,王朝,等.Sentinel-1与Sentinel-2影像联合的黄河三角洲湿地信息提取[J].海洋科学,2023,47(5):2-14.
|
17 |
刘啸添,周蕾,石浩,等.基于多种遥感植被指数、叶绿素荧光与CO2通量数据的温带针阔混交林物候特征对比分析[J].生态学报,2018,38(10):3482-3494.
|
18 |
|
19 |
帅爽,张志,张天,等.结合ZY-1 02D光谱与纹理特征的干旱区植被类型遥感分类[J].农业工程学报,2021,37(21):199-207.
|
20 |
廖超明,云子恒,罗恒,等.基于特征优选的喀斯特地区覆被信息提取及精度分析[J].测绘通报,2024(2):45-50.
|
21 |
李佳芪,那晓东.基于多季相特征组合的南瓮河湿地信息提取[J].湿地科学与管理,2022,18(6):16-20.
|
22 |
刘瑞清,李加林,孙超,等.基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J].地理学报,2021,76(7):1680-1692.
|
23 |
刘晓亮,王志华,杨晓梅,等.面向自然场景土地覆被分类的遥感物候模式分区[J].地理学报,2024,79(9):2206-2229.
|
24 |
|
25 |
刘灵,张加龙,韩雪莲,等.基于GEE和Sentinel时序影像的优势树种识别研究[J].森林工程,2023,39(1):63-72,81.
|
26 |
徐凯健,田庆久,徐念旭,等.基于时序NDVI与光谱微分变换的森林优势树种识别[J].光谱学与光谱分析,2019,39(12):3794-3800.
|
27 |
宋洁,刘学录.基于多源遥感数据提高山地森林识别精度——以祁连山国家公园肃南县段为例[J].草业学报,2021,30(10):1-14.
|
28 |
王宁,田家,田庆久.基于MODIS日地表反射率产品的长时序日分辨率EVI重建方法[J].遥感学报,2024,28(4):969-980.
|
29 |
吕林,易文彬,崔丹丹,等.基于Google Earth Engine遥感大数据云平台的盐城盐沼植被精细分类研究[J].海洋通报,2024,43(1):114-126.
LYU L,
|
30 |
|
31 |
蓝斐芜.基于时序遥感的沼泽植被-水文变化监测及其时空耦合关系研究[D].桂林:桂林理工大学,2022.
|
32 |
张炳华,张镱锂,谷昌军,等.基于随机森林与特征选择的藏东南土地覆被分类方法及精度评价[J].地理科学,2023,43(3):388-397.
|
33 |
|
34 |
薛朝辉,钱思羽.融合Landsat 8与Sentinel-2数据的红树林物候信息提取与分类[J].遥感学报,2022,26(6):1121-1142.
|
35 |
孟凤,朱庆伟,董士伟,等.基于多季相分形特征的Landsat 8 OLI影像耕地信息提取方法[J].农业机械学报,2024,55(6):168-177.
|
36 |
吴喜芳,化仕浩,张莎,等.基于多物候特征指数的冬小麦分布信息提取[J].农业机械学报,2023,54(12):207-216.
|
/
〈 |
|
〉 |