基于图神经网络的林分空间结构优化

张雨晨, 董希斌, 张甜, 郭奔, 张佳旺, 滕弛, 宋梓恺

PDF(2172 KB)
PDF(2172 KB)
森林工程 ›› 2025, Vol. 41 ›› Issue (03) : 451-461. DOI: 10.7525/j.issn.1006-8023.2025.03.002
森林资源建设与保护

基于图神经网络的林分空间结构优化

作者信息 +

Stand Spatial Structure Optimization Using Graph Neural Networks

Author information +
History +

摘要

林分空间结构优化是实现森林可持续经营的关键问题,传统优化方法在处理复杂空间关系和大规模数据时往往效率较低。为此,提出一种基于图注意力网络(graph attention network,GAT)的林分空间结构优化方法,通过熵权-物元分析法构建综合空间结构评价体系,并以黑龙江省伊春市北部新青林业局汤林林场的林分数据为基础,建立图神经网络模型(graph neural networks,GNN),对林分空间结构进行多目标优化分析。试验结果表明,在25%采伐强度下,林分综合空间结构指数由4.336提升至7.256,GAT模型在捕捉复杂空间关系、优化多目标任务中表现优越。研究结果为林分空间结构优化及森林经营管理提供新的智能化手段,有助于增强森林生态系统的健康与稳定性。

Abstract

The optimization of stand spatial structure is a key issue in achieving sustainable forest management. Traditional optimization methods often exhibit low efficiency in handling complex spatial relationships and large-scale data. This study proposed a stand spatial structure optimization method based on Graph Attention Networks (GAT). An integrated spatial structure evaluation system was established using the entropy-weighted matter-element analysis method, and a graph neural network model was constructed based on stand data from the Tanglin Forest Farm of the Xinqing Forestry bureau in northern Yichun,Heilongjiang Province. The model was applied to perform multi-objective optimization analysis of stand spatial structure. Experimental results showed that at a 25% harvesting intensity, the integrated spatial structure index improved from 4.336 to 7.256. The GAT model demonstrated superior performance in capturing complex spatial relationships and optimizing multi-objective tasks. This study provides an innovative and intelligent approach for optimizing stand spatial structure and managing forests, contributing to the enhancement of forest ecosystem health and stability.

关键词

林分空间结构 / 图神经网络 / 物元分析法 / 图注意力网络 / 熵权法

Key words

Stand spatial structure / graph neural networks / matter-element analysis / graph attention network / entropy weighting method

中图分类号

S750

引用本文

导出引用
张雨晨 , 董希斌 , 张甜 , . 基于图神经网络的林分空间结构优化. 森林工程. 2025, 41(03): 451-461 https://doi.org/10.7525/j.issn.1006-8023.2025.03.002
ZHANG Yuchen, DONG Xibin, ZHANG Tian, et al. Stand Spatial Structure Optimization Using Graph Neural Networks[J]. Forest Engineering. 2025, 41(03): 451-461 https://doi.org/10.7525/j.issn.1006-8023.2025.03.002

参考文献

1
张甜,董希斌,唐国华,等.大兴安岭不同类型低质林土壤和枯落物的水文性能[J].东北林业大学学报201745(10):1-5.
ZHANG T DONG X B TANG G H,et al.Hydrological properties of soil and litter in different types of low quality forest in Daxing’an Mountains[J].Journal of Northeast Forestry University201745(10):1-5.
2
刘帅.天然次生林林分结构分析及多目标智能优化研究[D].株洲:中南林业科技大学,2017.
LIU S.Research on the analysis and multi-objective intelligent optimization of stand structure of natural secondary forest[D].Zhuzhou:Central South University of Forestry and Technology,2017.
3
惠刚盈,胡艳波,徐海.森林空间结构的量化分析方法[C]//中国科协学术年会26分会场.北京:中国林学会,2005
HUI G Y HU Y B XU H.Quantitative analysis method for forest spatial structure[C]//26th Session of the Academic Annual Conference of China Association for Science and Technology.Beijing:Chinese Forestry Society,2005.
4
龚直文,亢新刚,顾丽,等.天然林林分结构研究方法综述[J].浙江林学院学报200926(3):434-443.
GONG Z W KANG X G GU L,et al.Research methods on natural forest stand structure:A review[J].Journal of Zhejiang Forestry College200926(3):434-443.
5
卿东升,张晓芳,李建军,等.基于蜂群–粒子群算法的天然林空间结构优化[J].系统仿真学报202032(3):371-381.
QING D S ZHANG X F LI J J,et al.Spatial structure optimization of natural forest based on bee colony-particle swarm algorithm[J].Journal of System Simulation202032(3):371-381.
6
DENG A HOOI B.Graph neural network-based anomaly detection in multivariate time series[C]// AAAI Conference on Artificial Intelligence,2021.
7
FORTUNE S.Voronoi diagrams and delaunay triangulations[M].Handbook of Discrete and Cy,2nd Ed.,2004.
8
AURENHAMMER F.Voronoi diagrams-a survey of a fundamental geometric data structure[J].ACM Computing Surveys199123(3):345-405.
9
汤孟平,陈永刚,施拥军,等.基于Voronoi图的群落优势树种种内种间竞争[J].生态学报2007(11):4707-4716.
TANG M P CHEN Y G SHI Y J,et al.Intraspecific and interspecific competition analysis of community dominant plant populations based on Voronoi diagram[J].Acta Ecologica Sinica2007(11):4707-4716.
10
曹小玉,李际平.林分空间结构指标研究进展[J].林业资源管理2016(4):65-73.
CAO X Y LI J P.Research progress on indicators of the stand spatial structure[J].Forest Resources Management2016(4):65-73.
11
惠刚盈,李丽,赵中华,等.林木空间分布格局分析方法[J].生态学报2007(11):4717-4728.
HUI G Y LI L ZHAO Z H,et al.The comparison of methods in analysis of the tree spatial distribution pattern[J].Acta Ecologica Sinica2007(11):4717-4728.
12
惠刚盈,VON GADOW KLAUS, ALBERT MATTHIAS.角尺度——一个描述林木个体分布格局的结构参数[J].林业科学199935(1):39-44.
HUI G Y VON GADOW K ALBERT M.The neighbourhood pattern - A new structure parameter for describing distribution of forest tree position[J].Scientia Silvae Sinicae199935(1):39-44.
13
赵中华,惠刚盈,胡艳波,等.基于大小比数的林分空间优势度表达方法及其应用[J].北京林业大学学报201436(1):78-82.
ZHAO Z H HUI G Y HU Y B,et al.Method and application of stand spatial advantage degree based on the neighborhood comparison[J].Journal of Beijing forestry university201436(1):78-82.
14
曹小玉,李际平,周永奇,等.杉木林林层指数及其与林下灌木物种多样性的关系[J].生态学杂志201534(3):589-595.
CAO X Y LI J P ZHOU Y Q,et al.Stand layer index and its relations with species diversity of understory shrubs of Cunninghamia lanceolata plantations[J].Chinese Journal of Ecology201534(3):589-595.
15
张宁.基于竞争指数的杉木林分结构可视化模拟研究[D].长沙:中南林业科技大学,2013.
ZHANG N.Visual simulation of stand structure in Cunninghamia Lanceolaata based on competiton index[D].Changsha:Central South University of Forestry and Technology,2013.
16
陈建宏,邓伟夏.熵权模糊物元分析法在采矿方法选择中的应用[J].科技导报201432(2):30-33.
CHEN J H DENG W X.Entropy fuzzy matter element analysis method of mining method selection[J].Science & Technology Review201432(2):30-33.
17
杨春燕,蔡文.可拓集中关联函数的研究进展[J].广东工业大学学报201229(2):7-14.
YANG C Y CAI W.Recent research progress in dependent functions in extension sets[J].Journal of Guangdong University of Technology201229(2):7-14.
18
李际平,曹小玉.林分空间结构优化与模拟技术[M].北京:科学出版社,2019.
LI J P CAO X Y.Optimization and simulation techniques for forest spatial structure[M].Beijing:Science Press,2019.
19
王卓,王成红.简单无向图的同构判定方法[J].自动化学报202349(9):1878-1888.
WANG Z WANG C H.Isomorphism determination methods for simple undirected graphs[J].Acta automatica sinica202349(9):1878-1888.
20
LI Y H LU Y ZHANG R C,et al.Deep learning for energy efficient beamforming in MU-MISO networks:A GAT-Based approach[J].IEEE Wireless Communications202312(7):1264-1268.
21
ZHANG L HAN S YANG C,et al.A gradient driven graph neural network for optimizing precoding[C]// 2023 IEEE Globecom Workshops(GC Wkshps),Kuala Lumpur,Malaysia,IEEE,2023:341-346.
22
PIPIN S J PURBA R KURNIAWAN H.Prediksi saham menggunakan recurrent neural network (RNN-LSTM) dengan optimasi adaptive moment estimation[J].Journal of Computer System and Informatics(JoSYC)20234(4):806-815.
23
卿东升,彭进香,李建军,等.遗传算法求解林分空间结构优化问题[J].森林与环境学报202242(4):434-441.
QING D S PENG J X LI J J,et al.Genetic algorithm to solve the optimization problem of stand spatial structure[J].Journal of Forest and Environment202242(4):434-441.
24
周梓轩,杨德岭,刘慧.改进麻雀搜索算法在优化林分空间结构求解中的应用[J].东北林业大学学报202351(11):68-73.
ZHOU Z X YANG D L LIU H.Improved sparrow search algorithm in optimizing spatial structure of forest stands[J].Journal of Northeast Forestry University202351(11):68-73.
25
刘鑫,黄浪,卿东升,等.基于Voronoi空间单元的林分空间结构智能优化研究[J].林业资源管理2023(4):27-35.
LIU X HUANG L QING D S,et al.A study on forest stand spatial structure intelligent optimization based on Voronoi spatial unit[J].Forest Resources Management2023(4):27-35.

基金

国家重点研发计划项目(2022YFD2201001)
山西省基础研究计划项目(20210302123375)

评论

PDF(2172 KB)

Accesses

Citation

Detail

段落导航
相关文章

/