
基于近红外光谱的林内枯叶跨林分间模型迁移的含水率检测方法
张佳薇, 姜天, 杨春梅, 刘强, 韩哲, 刘泽盛, 李明宝
基于近红外光谱的林内枯叶跨林分间模型迁移的含水率检测方法
Moisture Content Detection Method in Forest Floor Litter Model Transfer Across Stands Using Near-Infrared Spectroscopy
森林地表枯叶含水率是森林火灾发生的重要因素,其精准检测对森林火灾的预防尤为重要。近红外光谱技术可以根据光谱数据直接反演水分含量,从而实现枯叶含水率的快速检测,但不同可燃物光谱光照强度数据的特征波段不尽相同,需要对不同树种的枯叶分别建立检测模型以匹配不同的光照强度与含水率反演关系,而对不同林分的光谱光照强度数据进行采集与标注也需要较高的时间成本,限制了光谱法的实际应用。为此,提出基于双向长短期记忆神经网络(Bi-LSTM)的森林地表枯叶含水率检测迁移学习方法,将训练好的模型参数迁移到新的模型中,避免重新训练模型,从而提高模型的学习效率、减小训练模型所需的数据量。结果表明,与经典反演方法长短期记忆网络(LSTM)相比,Bi-LSTM具有更好的检测性能,蒙古栎和落叶松的平均绝对误差(mean absolute error,MAE)分别减小了0.62%和0.87%,均方误差(mean square error,MSE)分别减小了0.28%和0.70%。且基于Bi-LSTM改进的迁移学习方法,大大降低了对标记近红外光谱数据的依赖。当目标域样本数为300个时,源域样本数为1 000个时,检测模型的MAE、MSE、决定系数(coefficient of determi nation,R 2)分别为3.27%、1.10%、0.918。MAE和MSE比没有源域训练的检测模型分别缩小了2.36%和1.02%,R 2提升了0.114。对比迁移前后说明迁移学习为降低光谱枯叶含水率建模时间成本、提高光谱检测实用性提供新的手段。
The moisture content of forest floor litter is a key factor in forest fire occurrences, and its accurate detection is crucial for fire prevention. Near-infrared spectroscopy (NIRS) can directly invert moisture content from spectral data, enabling rapid detection of litter moisture content. However, spectral characteristics differ between fuel types due to variations in light intensity data at different wavelengths, requiring separate detection models for litter from different tree species to match specific light intensity-moisture content inversion relationships. Collecting and labeling spectral data across different forest stands is time-consuming, limiting the practical application of the spectral method. To address this issue, this study proposes a moisture content detection method for forest floor litter based on Bi-LSTM (Bidirectional Long Short-Term Memory) transfer learning. By transferring the trained model parameters to new models, we avoid training models from scratch, thereby improving model learning efficiency and reducing the data required for training. The study demonstrates that the Bi-LSTM method surpasses the traditional inversion approach using LSTM in terms of detection accuracy. Specifically, the mean absolute error (MAE) for Quercus mongolica and Larix gmelinii is reduced by 0.62% and 0.87%, respectively, while the mean squared error (MSE) is reduced by 0.28% and 0.70%, respectively. Moreover, the Bi-LSTM-based transfer learning approach significantly lessens the reliance on labeled NIR spectral data. With a target domain sample size of 300 and a source domain sample size of 1 000, the detection model record an MAE of 3.27%, an MSE of 1.10%, and an R² of 0.918. When compared to models without source domain training, the MAE and MSE show reductions of 2.36% and 1.02%, respectively, and an increase in R² of 0.114. A comparative analysis before and after implementing transfer learning reveals that this methodology offers a novel strategy to diminish the time cost associated with modeling moisture content in spectral litter and to enhance the practical application of spectral detection.
枯叶凋落物 / 含水率 / 迁移学习 / 深度学习 / 近红外光谱
Litter fall / moisture content / transfer learning / deep learning / near-infrared spectrum
S762.2
1 |
梁盛.亚热带5种典型森林类型地表死可燃物负荷量及燃烧能量释放量[D].长沙:中南林业科技大学,2024.
|
2 |
徐伟恒,吴超,杨磊,等.滇东北地区华山松与云南松的地表凋落物载量及火强度对比研究[J].西南林业大学学报(自然科学),2019,39(5):151-156.
|
3 |
韩冰洁,叶江霞.植被冠层可燃物含水率评估方法研究进展[J].世界林业研究,2024,37(4):46-52.
|
4 |
谢字希,胡海清,杨曦光,等.基于实测光谱的大兴安岭地区典型森林枯落物含水率估测模型[J].生态学杂志,2017,36(11):3321-3328.
|
5 |
孙龙,刘祺,胡同欣.森林地表死可燃物含水率预测模型研究进展[J].林业科学,2021,57(4):142-152.
|
6 |
胡海清,罗斯生,罗碧珍,等.森林可燃物含水率及其预测模型研究进展[J].世界林业研究,2017,30(3):64-69.
|
7 |
王婕.安宁地区主要树种死可燃物含水率及火险等级研究[D].北京:北京林业大学,2018.
|
8 |
张运林,田玲玲,向敏,等.室内模拟空气温湿度对蒙古栎林凋落物床层平衡含水率和时滞的影响[J].生态学杂志,2022,41(10):2072-2080.
|
9 |
张小丹.基于卷积神经网络的近红外光谱定量分析模型建立与转移研究[D].太原:中北大学,2022.
|
10 |
刘瑜明,王巧华,陈远哲,等.猪肉理化指标的近红外光谱无损检测[J].光谱学与光谱分析,2024,44(5):1346-1353.
|
11 |
朱诗豪,吴志伟,李政杰,等.赣南马尾松林地表细小死可燃物含水率动态及模型[J].林业科学,2024,60(5):158-168.
|
12 |
刘凯,王玉峰,彭志青,等.基于机器学习的高光谱土壤养分特征波段提取方法[J].光学学报,2024:1-18.
|
13 |
王冉.基于卷积神经网络与迁移学习的高光谱图像分类[D].赣州:赣南师范大学,2023.
|
14 |
|
15 |
叶颖慧.森林死可燃物含水率在线测量技术研究[D].哈尔滨:东北林业大学,2019.
|
16 |
|
17 |
郑文瑞.基于迁移学习的土壤速效磷近红外预测方法研究[D].合肥:安徽农业大学,2022.
|
18 |
魏玉震.基于光谱和光谱成像技术的茶叶含水率检测机理和方法研究[D].杭州:浙江大学,2019.
|
19 |
沈欢超.基于人工智能与近红外光谱技术的烟草质量控制研究[D].杭州:浙江大学,2023.
|
20 |
胡燕芳.基于小样本学习的图像分类方法研究与应用[D].赣州:江西理工大学,2022.
|
21 |
|
22 |
|
23 |
|
24 |
朱瑞芬,徐远东,孙万斌,等.基于人工神经网络的狼尾草属牧草品质近红外光谱预测研究[J].草地学报,2024,32(2):527-534.
|
25 |
汪志强,李大鹏,刘强,等.基于温度修正和可见/近红外光谱的油茶籽含水率检测[J].食品与机械,2022,38(12):127-132.
|
26 |
徐胜勇,刘政义,黄远.基于Self-Attention-BiLSTM网络的西瓜种苗叶片氮磷钾含量高光谱检测方法[J].农业机械学报,2024,55(98):243-252.
|
27 |
|
/
〈 |
|
〉 |