搭载反应釜的钢框架结构动力性能分析与设计建议

王福明, 万嘉祺, 陈镜丞, 蒋友宝, 郁晨羽, 罗孝宇

PDF(6402 KB)
PDF(6402 KB)
建筑钢结构进展 ›› 2025, Vol. 27 ›› Issue (04) : 24-34. DOI: 10.13969/j.jzgjgjz.20231106001

搭载反应釜的钢框架结构动力性能分析与设计建议

作者信息 +

Dynamic Performance Analysis and Design Recommendations for Steel Frame Structure Supporting Reactors

Author information +
History +

摘要

反应釜工作时会对搭载其的钢框架施加较大的高频动荷载,但是目前此类钢框架结构的设计主要采用静力方法,忽略了反应釜运转对其的影响。提出了一种质量点和梁单元结合的模拟反应釜动力体系及其与钢框架连接的简化方法,可高效获得反应釜运转时钢框架的动力响应。基于现行标准《容器支座 第4部分:支承式支座》(NB/T 47065.4—2018),分析了反应釜支座底部节点与整体框架的承载能力,以及不同反应釜搅拌叶片旋转方向下的动力响应,并进行了该类结构的优化设计研究。结果表明:按现行标准设计的反应釜支座与连接节点为结构的薄弱部位,而基于钢材S-N疲劳曲线进行优化设计的支座能够使结构在正常工作范围内保持弹性;采用“相邻各异”的搅拌方向可以使反应釜搭载结构具有最小的弹性变形。研究结果可为相关设计工作提供参考。

Abstract

Steel frame with the reactor is subjected to large and high-frequency dynamic load when the reactor is stirring. However, the design of this kind of steel frame structure usually adopts the static design method, and the static analysis cannot accurately describe the dynamic effect of the reactor acting on the structure. In order to efficiently research the dynamic effect of the steel frame supporting the reactor during the operation of reactor, a simplified modeling method is proposed in this paper to connect the reactor dynamic system with the steel frame using mass points and beam elements. Based on the current standard Vessel SupportsPart 4: Supporting Supports (NB/T 47065.4—2018), the performance of the bottom joint of the reactor support, the overall structure, and the dynamic response of the reactor stirring blade under different rotation directions are studied, and the optimization design research on this type of structure is conducted. The results show that the vessel supports and joints designed according to the current standard are the weak parts of the structure, while the optimization design of the support based on the S-N fatigue curve of steel can ensure the structure remain within the elastic limit during normal operation. The method of "opposite of adjacent" used on setting the rotation direction of the reactor stirring can make the load-bearing structure have the minimum elastic deformation. This study provides some reference for the related design and research work.

关键词

反应釜 / 高频动荷载 / 容器支座 / 钢框架 / 动力响应 / S-N疲劳曲线 / 优化设计

Key words

reactor / high-frequency dynamic load / reactor support / steel frame / dynamic response / S-N fatigue curve / optimization design

中图分类号

TU391

引用本文

导出引用
王福明 , 万嘉祺 , 陈镜丞 , . 搭载反应釜的钢框架结构动力性能分析与设计建议. 建筑钢结构进展. 2025, 27(04): 24-34 https://doi.org/10.13969/j.jzgjgjz.20231106001
WANG Fuming, WAN Jiaqi, CHEN Jingcheng, et al. Dynamic Performance Analysis and Design Recommendations for Steel Frame Structure Supporting Reactors[J]. Progress in Steel Building Structures. 2025, 27(04): 24-34 https://doi.org/10.13969/j.jzgjgjz.20231106001

参考文献

1
国家能源局.容器支座 第4部分:支承式支座:NB/T 47065.4—2018[S].北京:新华出版社,2018.
National Energy Administration.Vessel Support—Part 4:Bracket Support:NB/T 47065.4—2018[S].Beijing:Xinhua Publishing House,2018.(in Chinese)
2
中华人民共和国工业和信息化部.钢制化工容器设计基础规范:HG/T 20580—2020[S].北京:北京科学技术出版社,2020.
Ministry of Industry and Information Technology of the People’s Republic of China.Standard for Design Base of Steel Chemical Vessels:HG/T 20580—2020[S].Beijing:Beijing Science and Technology Press,2020.(in Chinese)
3
雷宏刚,付强,刘晓娟.中国钢结构疲劳研究领域的30年进展[J].建筑结构学报,2010,31(增刊1):84-91.DOI:10.14006/j.jzjgxb.2010.s1.017.
LEI Honggang,FU Qiang,LIU Xiaojuan. Research progress of steel structure fatigue in past 30 years in China[J].Journal of Building Structures,2010,31(Suppl.1):84-91.DOI:10.14006/j.jzjgxb.2010.s1.017.(in Chinese)
4
PIERALISI I,MONTANTE G,PAGLIANTI A.Prediction of fluid dynamic instabilities of low liquid height-to-tank diameter ratio stirred tanks[J].Chemical Engineering Journal,2016,295:336-346.DOI:10.1016/j.cej.2016.03.026.
5
BUSCIGLIO A,SCARGIALI F,GRISAFI F,et al.Oscillation dynamics of free vortex surface in uncovered unbaffled stirred vessels[J].Chemical Engineering Journal,2016,285:477-486.DOI:10.1016/j.cej.2015.10.015.
6
BUSCIGLIO A,MONTANTE G,KRACÍK T,et al.Rotary sloshing induced by impeller action in unbaffled stirred vessels[J].Chemical Engineering Journal,2017,317:433-443.DOI:10.1016/j.cej.2017.02.099.
7
李小虎.搅拌反应釜振动分析及结构优化[J].化工机械,2020,47(1):37-40,53.
LI Xiaohu.Vibration analysis and structure optimization of stirred vessels[J].Chemical Engineering & Machinery,2020,47(1):37-40,53.(in Chinese)
8
国家市场监督管理总局,国家标准化管理委员会.地脚螺栓:GB/T 799—2020[S].北京:中国标准出版社,2020.
State Administration for Market Regulation,National Standardization Administration.Foundation Bolts:GB/T 799—2020[S].Beijing:Standards Press of China,2020.(in Chinese)
9
中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.机械工业厂房结构设计规范:GB 50906—2013[S].北京:中国计划出版社,2013.
Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.Code for Design of Machinery Industry Workshop Structures:GB 50906—2013[S].Beijing:China Planning Press,2013.(in Chinese)
10
WU T,HUANG F H,ZHANG D C,et al.Anchorage failure mechanism and uplift bearing capacity of L- & J-anchor bolts in plain concrete[J].Engineering Failure Analysis,2024,159:107991.DOI:10.1016/j.engfailanal.2024.107991.
11
YU S S,ZHU W C,NIU L L,et al.Experimental and numerical analysis of fully grouted long rockbolt load-transfer behavior[J].Tunnelling and Underground Space Technology,2019,85:56-66.DOI:10.1016/j.tust.2018.12.001.
12
SEOK S,HAIKAL G,RAMIREZ J A,et al.Finite element simulation of bond-zone behavior of pullout test of reinforcement embedded in concrete using concrete damage-plasticity model 2 (CDPM2)[J].Engineering Structures,2020,221:110984.DOI:10.1016/j.engstruct.2020.110984.
13
REN W,ZHOU X H,WANG J S,et al.Pull-out behavior of the pre-installed lifting anchor with supplementary reinforcement for the precast concrete segments of wind turbine hybrid towers[J].Engineering Structures,2024,303:117547.DOI:10.1016/j.engstruct.2024.117547.
14
NONAKA T,ALI A.Dynamic response of half-through steel arch bridge using fiber model[J].Journal of Bridge Engineering,2001,6(6):482-488.DOI:10.1061/(ASCE)1084-0702(2001)6:6(482).
15
GENIKOMSOU A S,POLAK M A.Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS[J].Engineering Structures,2015,98:38-48.DOI:10.1016/j.engstruct.2015.04.016.
16
WANG Y J,WU Z M,ZHENG J J,et al.Three-dimensional analytical model for the pull-out response of anchor-mortar-concrete anchorage system based on interfacial bond failure[J].Engineering Structures,2019,180:234-248.DOI:10.1016/j.engstruct.2018.11.024.
17
BENMOKRANE B,CHENNOUF A,MITRI H S.Laboratory evaluation of cement-based grouts and grouted rock anchors[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(7):633-642.DOI:10.1016/0148-9062(95)00021-8.
18
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.紧固件机械性能 螺栓、螺钉和螺柱:GB/T 3098.1—2010[S].北京:中国标准出版社,2011.
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of China.Mechanical Properties of Fasteners—Bolts,Screws and Studs:GB/T 3098.1—2010[S].Beijing:Standards Press of China,2011.(in Chinese)
19
KE K,WANG F M,YAM M C H,et al.A multi-stage-based nonlinear static procedure for estimating seismic demands of steel MRFs equipped with steel slit walls[J].Engineering Structures,2019,183:1091-1108.DOI:10.1016/j.engstruct. 2019.01.029.
20
王福明.多屈服段钢结构多次地震下的抗震性能与分析方法研究[D].长沙:湖南大学,2019.
WANG Fuming.Study on seismic performance and analysis method of multi-yield-stage steel structures subjected to multiple earthquake motions[D].Changsha:Hunan University,2019.(in Chinese)
21
中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.建筑抗震设计规范:GB 50011—2010[S].2016版.北京:中国建筑工业出版社,2016.
Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China.Code for Seismic Design of Buildings:GB 50011—2010[S].2016 ed.Beijing:China Architecture & Building Press,2016.(in Chinese)
22
Federal Emergency Management Agency.NEHRP Guidelines for the Seismic Rehabilitation of Buildings:FEMA 273[S].Washington,D.C.:Federal Emergency Management Agency,1997.
23
樊俊铃.基于能量耗散的Q235钢高周疲劳性能评估[J].机械工程学报,2018,54(6):1-9.DOI:10.3901/JME.2018.06.001.
FAN Junling.High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J].Journal of Mechanical Engineering,2018,54(6):1-9.DOI:10.3901/JME.2018.06.001.(in Chinese)
24
张艳霞,叶吉健,杨凡,等.自复位钢框架结构抗震性能动力时程分析[J].土木工程学报,2015,48(7):30-40.DOI:10.15951/j.tmgcxb.2015.07.004.
ZHANG Yanxia,YE Jijian,YANG Fan,et al.Seismic behavior time-history analysis of integral steel self-centering moment resisting frame[J].China Civil Engineering Journal,2015,48(7):30-40.DOI:10.15951/j.tmgcxb.2015.07.004.(in Chinese)
25
刘文锋,王来其,高彦强,等.高强钢筋混凝土框架抗震性能试验研究[J].土木工程学报,2014,47(11):64-74.DOI:10.15951/j.tmgcxb.2014.11.041.
LIU Wenfeng,WANG Laiqi,GAO Yanqiang,et al.Experimental study on seismic behavior of high-strength reinforced concrete frame[J].China Civil Engineering Journal,2014,47(11):64-74.DOI:10.15951/j.tmgcxb. 2014.11.041.(in Chinese)
26
CHOPRA A K.Dynamics of structures:theory and applications to earthquake engineering[M].4th ed.Upper Saddle River:Prentice Hall,2012.
27
CHOPRA A K,GOEL R K,CHINTANAPAKDEE C.Evaluation of a modified MPA procedure assuming higher modes as elastic to estimate seismic demands[J].Earthquake Spectra,2004,20(3):757-778.DOI:10.1193/1.1775237.

基金

长沙市自然科学基金(2022cskj025)
湖南省自然科学基金(2022JJ40494)
国家自然科学基金(52378126)

评论

PDF(6402 KB)

Accesses

Citation

Detail

段落导航
相关文章

/