
钢管混凝土拱桥系统易损性研究
秦泗凤, 文龙, 马存多, 徐春丽
钢管混凝土拱桥系统易损性研究
System Vulnerability of Concrete-Filled Steel Tubular Arch Bridges
为准确评估钢管混凝土拱桥地震损伤,将拱桥系统视为串-并联体系,即将拱桥系统各关键体系进行串联,而不同关键体系的单个构件之间则分别采用串联或并联形式。以某钢管混凝土拱桥为研究对象,通过时程分析和神经网络预测获得拱桥各构件的地震响应值,基于Copula函数分别得到拱桥各关键体系易损性和整体系统易损性,并与基于一阶界限法得到的系统易损性进行对比。研究结果表明:通过神经网络预测可以获得准确的拱桥结构地震响应值,当地震动峰值加速度A PG为0.4g时,预测准确率超过90%,并且随着A PG的增大,准确率逐渐提高;拱桥各关键构件体系中,拱上立柱体系失效概率最高,在抗震设计时应对其采取减隔震措施,风撑体系的失效概率最低,进行拱桥系统易损性分析时可忽略风撑体系的影响;基于串-并联体系的拱桥系统易损性介于一阶界限法的上界和下界之间,当A PG=0.3g时,轻微、中等和严重损伤状态下串-并联体系的系统失效概率分别为98%、94%及25%,与一阶界限法上界的相对偏差分别为-1.4%、-3.1%及-16%,与下界的相对偏差分别为0.6%、3%及11%,钢管混凝土拱桥采用串-并联体系进行系统易损性分析明显更合理。
In order to accurately evaluate the seismic damage of concrete-filled steel tubular (CFST) arch bridge, this paper regards the arch bridge system as a series-parallel system, that is, the key systems of the arch bridge system are connected in series, and the single components of different key systems are connected in series or in parallel. Taking a CFST arch bridge as the research object, the seismic response values of each component of the arch bridge are obtained by time-history analysis and neural network prediction. Based on the Copula function, the vulnerability of each key system and the overall system of the arch bridge are obtained respectively, and compared with the system vulnerability based on the first-order boundary method. The results show that the accurate seismic response value of arch bridge structure can be obtained by neural network prediction. When the peak ground acceleration A PG=0.4g, the prediction accuracy rate exceeds 90%, and with the increase of A PG, the accuracy rate gradually increases. Among the key component systems of the arch bridge, the failure probability of the arch column system is the highest, and the seismic isolation measures should be taken in the seismic design. The failure probability of the wind bracing system is the lowest, and the influence of the wind bracing system can be ignored in the vulnerability analysis of the arch bridge system. The vulnerability of the arch bridge system based on the series-parallel system is between the upper and lower bounds of the first-order boundary method. When the A PG=0.3g, the failure probabilities of the series-parallel system under mild, moderate and severe damage conditions are 98%, 94% and 25%, respectively. The relative deviations from the upper bounds of the first-order boundary method are -1.4%, -3.1% and -16%, respectively, and the relative deviations from the lower bounds are 0.6%, 3% and 11%, respectively. It is obviously more reasonable to use the series-parallel system to analyze the vulnerability of the CFST arch bridge.
钢管混凝土拱桥 / 地震易损性 / 串-并联体系 / Copula函数 / 时程分析 / 神经网络 / 失效概率
concrete-filled steel tubular arch bridge / seismic vulnerability / series-parallel system / Copula function / time-history analysis / neural network / failure probability
U448.22+5
1 |
吴文朋.考虑不确定性的钢筋混凝土桥梁地震易损性研究[D].长沙:湖南大学,2016.
WU Wenpeng.Seismic fragility of reinforced concrete bridges with consideration of various sources of uncertainty[D].Changsha:Hunan University,2016.(in Chinese)
|
2 |
LIU Q,YANG C Y.Seismic damage probability assessment of isolated girder bridges based on performance under near-field earthquakes[J].Applied Sciences,2021,11(20):9595.DOI:10.3390/APP11209595.
|
3 |
李宏男,成虎,王东升.桥梁结构地震易损性研究进展述评[J].工程力学,2018,35(9):1-16.DOI:10.6052/j.issn.1000-4750.2017.04.0280.
LI Hongnan,CHENG Hu,WANG Dongsheng.A review of advances in seismic fragility research on bridge structures[J].Engineering Mechanics,2018,35(9):1-16.DOI:10.6052/j.issn.1000-4750.2017.04.0280.(in Chinese)
|
4 |
MA M,WANG X G,LIU N D,et al.Nested copula model for overall seismic vulnerability analysis of multispan bridges[J].Shock and Vibration,2022,2022(1):3001933.DOI:10.1155/2022/3001933.
|
5 |
钟剑,任伟新,万华平,等.两水准地震设防下的斜拉桥体系易损性分析[J].中国公路学报,2017,30(12):101-109.DOI:10.19721/j.cnki.1001-7372.2017.12.011.
ZHONG Jian,REN Weixin,WAN Huaping,et al.System fragility analysis for cable-stayed bridges under two level seismic hazard[J].China Journal of Highway and Transport,2017,30(12):101-109.DOI:10.19721/j.cnki.1001-7372.2017.12.011.(in Chinese)
|
6 |
吴文朋,李立峰.桥梁结构系统地震易损性分析方法研究[J].振动与冲击,2018,37(21):273-280.DOI:10.13465/j.cnki.jvs.2018.21.039.
WU Wenpeng,LI Lifeng.System seismic fragility analysis methods for bridge structures[J].Journal of Vibration and Shock,2018,37(21):273-280.DOI:10.13465/j.cnki.jvs.2018.21.039.(in Chinese)
|
7 |
王志远,赵人达,吴鑫睿,等.大跨度钢管混凝土劲性骨架拱桥地震易损性分析[J].振动与冲击,2023,42(16):72-81.DOI:10.13465/j.cnki.jvs.2023.16.009.
WANG Zhiyuan,ZHAO Renda,WU Xinrui,et al.Seismic vulnerability analysis of long-span CFST stiff-skeleton concrete arch bridges[J].Journal of Vibration and Shock,2023,42(16):72-81.DOI:10.13465/j.cnki.jvs.2023.16.009.(in Chinese)
|
8 |
CHEN X.System fragility assessment of tall-pier bridges subjected to near-fault ground motions[J].Journal of Bridge Engineering,2020,25(3):04019143.DOI:10.1061/(ASCE)BE.1943-5592.0001526.
|
9 |
CHEN L B,HUANG C G,CHEN H Q,et al.Seismic fragility models of a bridge system based on copula method[J].Earthquake Spectra,2022,38(2):1417-1437.DOI:10.1177/87552930211052573.
|
10 |
KIM J S,PARK W S,HAN T S.Framework to evaluate seismic fragility of bridges considering component damage correlations[J].Journal of Earthquake and Tsunami,2021,15(5):2150022.DOI:10.1142/s1793431121500226.
|
11 |
GAO W,CAO Q,HE H X,et al.Seismic vulnerability analysis of continuous beam bridge based on multivariate copula function[J].Journal of Physics:Conference Series,2023,2437(1):012080.DOI:10.1088/1742-6596/2437/1/012080.
|
12 |
REN L P,ZHANG G,ZHANG Y F,et al.Seismic fragility analysis of V-shaped continuous girder bridges[J].KSCE Journal of Civil Engineering,2020,24(3):835-846.DOI:10.1007/s12205-020-0805-8.
|
13 |
何浩祥,程扬,黄磊,等.基于多元Copula函数的连续梁桥整体地震易损性分析[J].北京工业大学学报,2022,48(10): 1018-1027.DOI:10.11936/bjutxb2021070018.
HE Haoxiang,CHENG Yang,HUANG Lei,et al.Seismic fragility analysis of continuous beam bridge based on multivariate copula function[J].Journal of Beijing University of Technology,2022,48(10):1018-1027.DOI:10.11936/bjutxb2021070018.(in Chinese)
|
14 |
YAN J L,GUO A X.Comparison of damage indexes for assessing seismic fragility of bearings in an offshore bridge[J].Applied Sciences,2023,13(13):7494.DOI:10.3390/APP13137494.
|
15 |
SARRAF SHIRAZI R,PEKCAN G,ITANI A.Analytical fragility curves for a class of horizontally curved box-girder bridges[J].Journal of Earthquake Engineering,2018,22(5): 881-901.DOI:10.1080/13632469.2016.1264325.
|
16 |
SONG S,QIAN Y J,LIU J,et al.Time-variant fragility analysis of the bridge system considering time-varying dependence among typical component seismic demands[J].Earthquake Engineering and Engineering Vibration,2019,18(2):363-377.DOI:10.1007/s11803-019-0509-6.
|
17 |
宋帅,王帅,吴刚,等.中小跨径梁桥地震易损性研究[J].振动与冲击,2020,39(9):118-125.DOI:10.13465/j.cnki.jvs.2020.09.016.
SONG Shuai,WANG Shuai,WU Gang,et al.Seismic vulnerability analysis of small and medium span girder bridges[J].Journal of Vibration and Shock,2020,39(9):118-125.DOI:10.13465/j.cnki.jvs.2020.09.016.(in Chinese)
|
18 |
马天宇,田石柱.基于双折线模型更新的桥梁框架墩混合试验[J].广西大学学报(自然科学版),2020,45(1):17-24.DOI:10.13624/j.cnki.issn.1001-7445.2020.0017.
MA Tianyu,TIAN Shizhu.Hybrid testing of bridge frame pier structure based on bilinear model renewal[J].Journal of Guangxi University (Natural Science Edition),2020,45(1): 17-24.DOI:10.13624/j.cnki.issn.1001-7445.2020.0017.(in Chinese)
|
19 |
郑玲玲,陈建伟,李健强,等.圆钢管高强混凝土轴压短柱承载力有限元分析[J].世界地震工程,2016,32(3):171-178.
ZHENG Lingling,CHEN Jianwei,LI Jianqiang,et al.Finite-element analysis of axial bearing capacity of circular steel tube with high strength concrete[J].World Earthquake Engineering,2016,32(3):171-178.(in Chinese)
|
20 |
杨灿,张铭,张家元.大跨度中承式钢箱桁架拱桥抗震体系研究[J].世界桥梁,2022,50(1):86-92.DOI:10.3969/j.issn.1671-7767.2022.01.014.
YANG Can,ZHANG Ming,ZHANG Jiayuan.Research on seismic protection system of long-span half-through steel box truss arch bridge[J].World Bridges,2022,50(1):86-92.DOI:10.3969/j.issn.1671-7767.2022.01.014.(in Chinese)
|
21 |
刘阳冰,刘晶波.钢-混凝土组合框架结构易损性分析[C]//第17届全国结构工程学术会议论文集.北京:《工程力学》杂志社,2008:388-392.
LIU Yangbing,LIU Jingbo.Vulnerability analysis of steel-concrete composite frame structures[C]//Proceedings of the 17th National Conference on Structural Engineering.Beijing:Engineering Mechanics Magazine,2008:388-392.(in Chinese)
|
22 |
张健,师新虎,刘志强.大跨度整体式高墩桥梁地震易损性分析[J].噪声与振动控制,2023,43(3):212-219.DOI:10.3969/j.issn.1006-1355.2023.03.033.
ZHANG Jian,SHI Xinhu,LIU Zhiqiang.Seismic vulnerability analysis of long-span integral high-pier bridges[J].Noise and Vibration Control,2023,43(3):212-219.DOI:10.3969/j.issn.1006-1355.2023.03.033.(in Chinese)
|
23 |
宋帅,吴元昊,徐佰顺,等.斜拉桥系统地震易损性评估的Pair Copula技术[J].工程力学,2021,38(9):110-123.DOI: 10.6052/j.issn.1000-4750.2020.09.0629.
SONG Shuai,WU Yuanhao,XU Baishun,et al.Pair Copula technique of seismic vulnerability assessment of cable-stayed bridge system[J].Engineering Mechanics,2021,38(9):110-123.DOI:10.6052/j.issn.1000-4750.2020.09.0629.(in Chinese)
|
24 |
李建军.基于智能算法的RC隔震连续梁桥地震易损性分析[D].武汉:华中科技大学,2013.
LI Jianjun.Intelligent algorithms-based fragility analysis of isolated RC-continuous highway bridge using LRB[D].Wuhan:Huazhong University of Science and Technology,2013.(in Chinese)
|
25 |
王力,虞庐松,刘世忠,等.横向地震作用下异型钢管混凝土拱桥地震易损性分析[J].兰州交通大学学报,2020,39(5): 13-19.DOI:10.3969/j.issn.1001-4373.2020.05.003.
WANG Li,YU Lusong,LIU Shizhong,et al.Seismic vulnerability analysis of irregular concrete-filled steel tube arch bridge under transverse seismic action[J].Journal of Lanzhou Jiaotong University,2020,39(5):13-19.DOI:10.3969/j.issn.1001-4373.2020.05.003.(in Chinese)
|
26 |
杨万标.大跨度钢管混凝土拱桥的地震易损性研究[D].苏州:苏州科技学院,2015.
YANG Wanbiao.Research on seismic vulnerability analysis of large span concrete-filled stee tube arch bridge[D].Suzhou:Suzhou University of Science and Technology,2015.(in Chinese)
|
27 |
熊程.考虑冲刷作用的大跨钢管混凝土拱桥地震易损性评估[D].南昌:南昌大学,2021.
XIONG Cheng.Long-span concrete-filled steel tube arch bridge considering scouring earthquake vulnerability assessment[D].Nanchang:Nanchang University,2021.(in Chinese)
|
28 |
CUI S G,GUO C,SU J,et al.Seismic fragility and risk assessment of high-speed railway continuous-girder bridge under track constraint effect[J].Bulletin of Earthquake Engineering,2019,17(3):1639-1665.DOI:10.1007/s10518-018-0491-9.
|
/
〈 |
|
〉 |