模块化钢结构建筑连接技术及鲁棒性研究进展与展望

陈金林, 侯兆新, 龚超, 刘兆祥, 赵木子, 付张鑫

PDF(5374 KB)
PDF(5374 KB)
建筑钢结构进展 ›› 2025, Vol. 27 ›› Issue (04) : 1-13. DOI: 10.13969/j.jzgjgjz.20231101001

模块化钢结构建筑连接技术及鲁棒性研究进展与展望

作者信息 +

State-of-the-Art Research and Prospect of Inter-Module Connections and Robustness of Modular Steel Buildings

Author information +
History +

摘要

模块化钢结构建筑凭借标准化、集成化和工业化等优势,迅速得到了学术界和工程界的青睐。以模块间连接节点强度不足、相邻构件协同工作性能差和结构鲁棒性弱这3个问题为切入点,归纳了国内外模块化钢结构建筑中采用的半刚接和刚接节点,从力学机理和施工安装两个维度论述了现有模块间连接节点的发展与不足,提出了“梁端-柱端混合式连接”的解决思路。针对模块化钢结构建筑的模块间梁-梁、柱-柱协同工作,分析其与钢-混凝土组合梁和格构柱的异同,在考虑建筑装修及施工的基础上提出了非连续连接组合梁(柱)的解决思路,然后总结了模块化钢结构建筑鲁棒性的影响规律。基于现有研究成果,建议在模块间刚性连接节点、非连续连接组合构件及体系分析方面开展更为深入的研究。

Abstract

With the advantages of standardization, integration and industrialization, modular steel building has quickly attracted the attention of academia and industry. In this paper, the authors summarize the semi-rigid and rigid connection of modular steel buildings and mainly focus on weak connection, poor cooperative performance of adjacent components and weak robustness. The advantages and disadvantages of existing modular connections are elaborated from mechanical mechanism and construction. The idea of "connected at both beam and column end" is proposed. For the cooperative performance of beam-beam and column-column between modules, the similarities and differences with steel-concrete composite beams and lattice columns are analyzed. Considering the decoration and construction, the solution of composite beam (column) with discontinuous connection is put forward. Additionally, the patterns influencing the robustness of modular steel buildings are summarized. Based on the existing research, it is recommended to conduct more in-depth research on rigid connections between modules, composite components with discontinuous connection, and system analysis.

关键词

模块化钢结构建筑 / 模块间连接节点 / 构件协同工作 / 鲁棒性 / 非连续连接组合梁(柱)

Key words

modular steel building / module-to-module connection / component cooperative work / robustness / composite beam (column) with discontinuous connection

中图分类号

TU391

引用本文

导出引用
陈金林 , 侯兆新 , 龚超 , . 模块化钢结构建筑连接技术及鲁棒性研究进展与展望. 建筑钢结构进展. 2025, 27(04): 1-13 https://doi.org/10.13969/j.jzgjgjz.20231101001
CHEN Jinlin, HOU Zhaoxin, GONG Chao, et al. State-of-the-Art Research and Prospect of Inter-Module Connections and Robustness of Modular Steel Buildings[J]. Progress in Steel Building Structures. 2025, 27(04): 1-13 https://doi.org/10.13969/j.jzgjgjz.20231101001

参考文献

1
李爱群,周通,缪志伟. 模块化建筑体系研究进展[J]. 工业建筑,2018,48(3):132-139,150. DOI:10.13204/j.gyjz201803025.
LI Aiqun,ZHOU Tong,MIAO Zhiwei. State of the art of modular building system[J]. Industrial Construction,2018,48(3):132-139,150. DOI:10.13204/j.gyjz201803025.(in Chinese)
2
中华人民共和国住房和城乡建设部.住房和城乡建设部办公厅关于印发装配式钢结构模块建筑技术指南的通知:建办标函[2022]209号[A/OL].(2022-06-09). https://www.mohurd.gov.cn/gongkai/zc/wjk/art/2022/art_17339_76665 4.html.
Ministry of Housing and Urban-Rural Development of the People′s Republic of China. Notice of the General Office of the Ministry of Housing and Urban-Rural Development on Issuing the Technical Guidelines for Prefabricated Steel Structure Modular Buildings: Jian Ban Biao Han [2022] No. 209 [A/OL]. (2022-06-09). https://www.mohurd.gov. cn/gongkai/zc/wjk/art/2022/art_17339_766654.html.(in Chinese)
3
宗亮,张一弛,崔健,等. 模块化钢结构梁柱子结构抗连续倒塌性能研究[J]. 工程力学,2024,41(8):56-67. DOI:10.6052/j.issn.1000-4750.2022.06.0521.
ZONG Liang,ZHANG Yichi,CUI Jian,et al. Progressive collapse analysis on beam-column substructure of modular steel construction[J]. Engineering Mechanics,2024,41(8):56-67. DOI:10.6052/j.issn.1000-4750.2022.06.0521.(in Chinese)
4
丁阳,邓恩峰,宗亮,等. 模块化钢结构建筑连接节点研究进展[J]. 建筑结构学报,2019,40(3):33-40. DOI:10.14006/j.jzjgxb.2019.03.003.
DING Yang,DENG Enfeng,ZONG Liang,et al. State-of-the-art on connection in modular steel construction[J]. Journal of Building Structures,2019,40(3):33-40. DOI:10.14006/j.jzjgxb.2019.03.003.(in Chinese)
5
翟思源,曹轲,李国强,等. 柱承重模块化钢结构建筑模块间连接节点研究进展[J]. 建筑钢结构进展,2022,24(11):1-11. DOI:10.13969/j.cnki.cn31-1893.2022.11.001.
ZHAI Siyuan,CAO Ke,LI Guoqiang,et al. A state-of-the-art review on inter-module connections of column-supported modular steel buildings[J]. Progress in Steel Building Structures,2022,24(11):1-11. DOI:10.13969/j.cnki.cn31-1893.2022.11.001.(in Chinese)
6
SHARAFI P,MORTAZAVI M,SAMALI B,et al. Interlocking system for enhancing the integrity of multi-storey modular buildings[J]. Automation in Construction,2018,85:263-272. DOI:10.1016/j.autcon.2017.10.023.
7
中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.中国地震动参数区划图:GB 18306—2015[S]. 北京:中国标准出版社,2015.
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China. Seismic Ground Motion Parameters Zonation Map of China:GB 18306—2015[S]. Beijing:Standards Press of China,2015. (in Chinese)
8
中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局. 建筑抗震设计规范:GB 50011—2010[S]. 2016版. 北京:中国建筑工业出版社,2016.
Ministry of Housing and Urban-Rural Development of the People's Republic of China,General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China. Code for Seismic Design of Buildings:GB 50011—2010[S]. 2016 ed. Beijing:China Architecture & Building Press,2016.(in Chinese)
9
邓恩峰,宗亮,丁阳. 钢结构集成模块建筑新型节点力学性能研究[J]. 天津大学学报(自然科学与工程技术版),2018,51(7):702-710. DOI:10.11784/tdxbz201801017.
DENG Enfeng,ZONG Liang,DING Yang. Mechanical properties of innovative connection for integrated modular steel construction[J]. Journal of Tianjin University (Science and Technology),2018,51(7):702-710. DOI:10.11784/tdxbz201801017.(in Chinese)
10
DENG E F,ZONG L,DING Y,et al. Seismic behavior and design of cruciform bolted module-to-module connection with various reinforcing details[J]. Thin-Walled Structures,2018,133:106-119. DOI:10.1016/j.tws.2018.09.033.
11
DENG E F,ZONG L,DING Y,et al. Monotonic and cyclic response of bolted connections with welded cover plate for modular steel construction[J]. Engineering Structures,2018,167:407-419. DOI:10.1016/j.engstruct.2018.04.028.
12
毛磊. 箱式建筑箱体拼接节点受力性能研究[D]. 上海:同济大学,2015.
MAO Lei. Research on the joint mechanical behavior of container architecture [D]. Shanghai:Tongji University,2015. (in Chinese)
13
LU Y,LI G Q,MAO L. Experimental research on joint mechanical behavior of container structures[J]. Modular and Offsite Construction (MOC) Summit Proceedings,2015:215-222. DOI:10.29173/mocs171.
14
曹轲,翟思源,李国强,等.柱承重模块化钢框架抗侧刚度足尺试验与理论计算方法研究[J].建筑结构学报,2021,42(增刊1):55-61. DOI:10.14006/j.jzjgxb.2021.S1.0007.
CAO Ke,ZHAI Siyuan,LI Guoqiang,et al.Experimental study and theoretical calculation method on lateral stiffness of a full-scale column-supported modular steel frame[J]. Journal of Building Structures,2021,42(Suppl. 1):55-61. DOI:10.14006/j.jzjgxb.2021.S1.0007. (in Chinese)
15
曹轲,翟思源,李国强,等. 足尺柱承重模块化钢框架稳定承载力试验研究[J]. 同济大学学报(自然科学版),2023,51(3):375-384. DOI:10.11908/j.issn.0253-374x.21460.
CAO Ke,ZHAI Siyuan,LI Guoqiang,et al. Full-scale experimental study on stability bearing capacity of column-supported modular steel frame[J]. Journal of Tongji University (Natural Science),2023,51(3):375-384. DOI:10.11908/j.issn.0253-374x.21460.(in Chinese)
16
ZHAI S Y,LYU Y F,CAO K,et al. Experimental study on bolted-cover plate corner connections for column-supported modular steel buildings[J]. Journal of Constructional Steel Research,2022,189:107060. DOI:10.1016/j.jcsr. 2021. 107060.
17
LEE S,PARK J,SHON S,et al. Seismic performance evaluation of the ceiling-bracket-type modular joint with various bracket parameters[J]. Journal of Constructional Steel Research,2018,150:298-325. DOI:10.1016/j.jcsr.2018.08.008.
18
LEE S,PARK J,KWAK E,et al. Verification of the seismic performance of a rigidly connected modular system depending on the shape and size of the ceiling bracket[J]. Materials,2017,10(3):263. DOI:10.3390/ma10030263.
19
HAJIMOHAMMADI B,DAS S,GHAEDNIA H,et al. Structural performance of registration pin connection in VectorBloc modular construction system[J]. Journal of Constructional Steel Research,2022,197:107464. DOI:10.1016/j.jcsr.2022.107464.
20
DHANAPAL J,GHAEDNIA H,DAS S,et al. Structural performance of state-of-the-art VectorBloc modular connector under axial loads[J]. Engineering Structures,2019,183:496-509. DOI:10.1016/j.engstruct.2019.01.023.
21
DHANAPAL J,GHAEDNIA H,DAS S,et al. Behavior of thin-walled beam-column modular connection subject to bending load[J]. Thin-Walled Structures,2020,149:106536. DOI:10.1016/j.tws.2019.106536.
22
DAI X M,ZONG L,DING Y,et al. Experimental study on seismic behavior of a novel plug-in self-lock joint for modular steel construction[J]. Engineering Structures,2019,181:143-164. DOI:10.1016/j.engstruct.2018.11.075.
23
戴骁蒙. 模块化钢结构插入自锁式节点抗震性能与设计方法研究[D]. 天津:天津大学,2019.
DAI Xiaomeng. Research on seismic behavior and design method of self-lock plug-in joints in modular steel construction [D]. Tianjin:Tianjin University,2019. (in Chinese)
24
WANG Y R,XIA J W,MA R W,et al. Experimental study on the flexural behavior of an innovative modular steel building connection with installed bolts in the columns[J]. Applied Sciences,2019,9(17):3468. DOI:10.3390/app9173468.
25
王永瑞. 模块化建筑新型柱内置螺栓节点力学性能研究[D]. 徐州:中国矿业大学,2020.
WANG Yongrui. Study on the mechanical performance of an innovative modular steel building connection with installed bolts in the columns[D]. Xuzhou :China University of Mining and Technology,2020. (in Chinese)
26
NADEEM G,SAFIEE N A,ABU BAKAR N,et al. Finite element analysis of proposed self-locking joint for modular steel structures[J]. Applied Sciences,2021,11(19):9277. DOI:10.3390/app11199277.
27
KHAN K,YAN J B. Finite element analysis on seismic behaviour of novel joint in prefabricated modular steel building[J]. International Journal of Steel Structures,2020,20(3):752-765. DOI:10.1007/s13296-020-00320-w.
28
KHAN K. 一种预制模块钢结构建筑新型节点抗震性能的发展和研究[D]. 天津:天津大学,2018.
KHAN K. Development and study on the seismic behavior of novel joint in pre-fabricated modular steel building[D]. Tianjin:Tianjin University,2018. (in Chinese)
29
MA R W,XIA J W,CHANG H F,et al. Experimental and numerical investigation of mechanical properties on novel modular connections with superimposed beams[J]. Engineering Structures,2021,232:111858. DOI:10.1016/j.engstruct.2021.111858.
30
王燕,李华军,厉见芬. 半刚性梁柱节点连接的初始刚度和结构内力分析[J]. 工程力学,2003,20(6):65-69. DOI:10.3969/j.issn.1000-4750.2003.06.012.
WANG Yan,LI Huajun,LI Jianfen. Initial stiffness of semi-rigid beam-to-column connections and structural internal force analysis[J]. Engineering Mechanics,2003,20(6):65-69. DOI:10.3969/j.issn.1000-4750.2003.06.012.(in Chinese)
31
FATHIEH A,MERCAN O. Seismic evaluation of modular steel buildings[J]. Engineering Structures,2016,122:83-92. DOI:10.1016/j.engstruct.2016.04.054.
32
LAWSON R M,RICHARDS J. Modular design for high-rise buildings[J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings,2010,163(3):151-164. DOI:10.1680/stbu.2010.163.3.151.
33
徐博. 模块化钢结构建筑叠合钢梁受弯性能及力学模型研究[D]. 徐州:中国矿业大学,2020.
XU Bo. Development and study on the seismic behavior of novel joint in pre-fabricated modular steel building[D]. Xuzhou:China University of Mining and Technology,2020. (in Chinese)
34
田明,饶晓峰. 叠合梁用于超重型钢梁的研究[J]. 重庆建筑大学学报,1996,18(2):115-121.
TIAN Ming,RAO Xiaofeng. A study of laminated beam used for heavy steel beam[J]. Journal of Chongqing Jianzhu University,1996,18(2):115-121. (in Chinese)
35
黄仁锋,赵金城. 混合钢种工字形叠合梁抗弯承载力研究[J]. 钢结构,2015,30(3):12-17. DOI:10.13206/j.gjg201503003.
HUANG Renfeng,ZHAO Jincheng. Study on flexural capacity of hybrid I-shaped laminated steel girder[J]. Steel Construction,2015,30(3):12-17. DOI:10.13206/j.gjg201503003.(in Chinese)
36
李杰,桑丹,王涤平,等. 非连续连接的叠层钢梁试验研究[J]. 结构工程师,2013,29(4):125-131. DOI:10.15935/j.cnki.jggcs.2013.04.024.
LI Jie,SANG Dan,WANG Diping,et al. Experimental research on laminated steel beams with non-continuous connectors[J]. Structural Engineers,2013,29(4):125-131. DOI:10.15935/j.cnki.jggcs.2013.04.024.(in Chinese)
37
李杰,邓林强,桑丹,等. 叠层钢梁整体抗弯性能试验研究[J]. 工业建筑,2015,45(5):115-118,45. DOI:10.13204/j.gyjz201505025.
LI Jie,DENG Linqiang,SANG Dan,et al. Experimental research on flexural behaviour of laminated steel beams[J]. Industrial Construction,2015,45(5):115-118,45. DOI:10.13204/j.gyjz201505025.(in Chinese)
38
秦福阳. 钢结构模块化建筑叠合钢梁协同受弯性能研究[D]. 徐州:中国矿业大学,2019.
QIN Fuyang. Study on synergistic flexural performance of laminated steel beams in steel modular building[D]. Xuzhou:China University of Mining and Technology,2019. (in Chinese)
39
张惊宙,陆烨,李国强. 三维钢结构模块建筑结构受力性能分析[J]. 建筑钢结构进展,2015,17(4):57-64. DOI:10.13969/j.cnki.cn31-1893.2015.04.008.
ZHANG Jingzhou,LU Ye,LI Guoqiang. Structural analysis on mechanical properties of 3D steel structure modular buildings[J]. Progress in Steel Building Structures,2015,17(4):57-64. DOI:10.13969/j.cnki.cn31-1893.2015.04.008.(in Chinese)
40
杨晓杰,陆烨,顾超,等. 新型多高层钢结构箱式模块建筑的设计[J]. 建筑钢结构进展,2016,18(5):41-47,72. DOI:10.13969/j.cnki.cn31-1893.2016.05.006.
YANG Xiaojie,LU Ye,GU Chao,et al. Structural design of steel modular high-rise and multi-story buildings[J]. Progress in Steel Building Structures,2016,18(5):41-47,72. DOI:10.13969/j.cnki.cn31-1893.2016.05.006.(in Chinese)
41
CHOI K S,LEE H C,KIM H J. Influence of analytical models on the seismic response of modular structures[J]. Journal of the Korea Institute for Structural Maintenance and Inspection,2016,20(2):74-85. DOI:10.11112/jksmi. 2016.20.2.074.
42
XU B,XIA J W,MA R W,et al. Investigation on interfacial slipping response of laminated channel beams with bolt connections in modular steel buildings[J]. Journal of Building Engineering,2023,63:105441. DOI:10.1016/j.jobe.2022. 105441.
43
XU B,XIA J W,CHANG H F,et al. Evaluation of superimposed bending behaviour of laminated channel beams in modular steel buildings subjected to lateral load[J]. Thin-Walled Structures,2022,175:109234. DOI:10.1016/j.tws.2022.109234.
44
XU B,XIA J W,CHANG H F,et al. Flexural behaviour of pairs of laminated unequal channel beams with different interfacial connections in corner-supported modular steel buildings[J]. Thin-Walled Structures,2020,154:106792. DOI:10.1016/j.tws.2020.106792.
45
XU B,XIA J W,CHANG H F,et al. A comprehensive experimental-numerical investigation on the bending response of laminated double channel beams in modular buildings[J]. Engineering Structures,2019,200:109737. DOI:10.1016/j.engstruct.2019.109737.
46
杨超. 钢模块柱-柱及梁-梁组合耗能减震框架支撑结构分析[D]. 哈尔滨:哈尔滨工业大学,2019.
YANG Chao. Analysis of steel module column-column and beam-beam combined energy dissipation and vibration absorption frame brace structure[D]. Harbin:Harbin Institute of Technology,2019. (in Chinese)
47
杨超,徐亚冲,欧进萍. 装配式钢模块柱-柱和梁-梁组合的框架结构及其抗震性能分析[J]. 地震工程与工程振动,2022,42(1):34-45. DOI:10.13197/j.eeed.2022.0104.
YANG Chao,XU Yachong,OU Jinping. Fabricated steel modular column-column and beam-beam combination frame structure and its seismic performance analysis[J]. Earthquake Engineering and Engineering Dynamics,2022,42(1):34-45. DOI:10.13197/j.eeed.2022.0104.(in Chinese)
48
孙瑛志,杨晓杰,陆烨,等. 模块建筑槽钢组合柱长细比与截面惯性矩研究[J]. 钢结构,2016,31(5):1-5. DOI:10.13206/j.gjg201605001.
SUN Yingzhi,YANG Xiaojie,LU Ye,et al. Research on the slenderness ratio and section moment of inertia of composite channel-column in modular architecture[J]. Steel Construction,2016,31(5):1-5. DOI:10.13206/j.gjg 201605001.(in Chinese)
49
王炜. 多层箱式模块化建筑受力性能和设计方法的研究[D]. 西安:西安建筑科技大学,2017.
WANG Wei. A study on the mechanical performance and design method of modular building[D]. Xi’an:Xi’an University of Architecture and Technology,2017. (in Chinese)
50
徐亚冲. 钢模块柱-柱组合框架结构及其抗震性能分析[D]. 哈尔滨:哈尔滨工业大学,2019.
XU Yachong. Seismic performance analysis of column-to-column combined modular steel frame buildings[D]. Harbin:Harbin Institute of Technology,2019. (in Chinese)
51
杨超,徐亚冲,欧进萍. 模块化装配式钢框架组合柱及其抗侧与抗震滞回性能[J]. 工程力学,2022,39(4):65-75. DOI:10.6052/j.issn.1000-4750.2021.01.0098.
YANG Chao,XU Yachong,OU Jinping. Modular prefabricated steel frame combination column and its lateral and seismic hysteretic performance[J]. Engineering Mechanics,2022,39(4):65-75. DOI:10.6052/j.issn.1000-4750.2021.01.0098.(in Chinese)
52
王伟,王俊杰. 建筑钢结构抗连续倒塌的机理、评估与鲁棒性提升[M]. 北京:中国建筑工业出版社,2021.
WANG Wei,WANG Junjie. Progressive collapse prevention of steel building structures:mechanism,evaluation and robustness enhancement[M]. Beijing:China Architecture & Building Press,2021. (in Chinese)
53
SHARAFI P,ALEMBAGHERI M,KILDASHTI K,et al. Gravity-induced progressive collapse response of precast corner-supported modular buildings[J]. Journal of Architectural Engineering,2021,27(4):04021031. DOI:10.1061/(ASCE)AE.1943-5568.0000499.
54
HE X H C,CHAN T M,CHUNG K F. Effect of inter-module connections on progressive collapse behaviour of MiC structures[J]. Journal of Constructional Steel Research,2021,185:106823. DOI:10.1016/j.jcsr.2021.106823.
55
MUNMULLA T,NAVARATNAM S,THAMBOO J,et al. Analyses of structural robustness of prefabricated modular buildings:a case study on mid-rise building configurations[J]. Buildings,2022,12(8):1289. DOI:10.3390/buildings 12081289.
56
THAI H T,HO Q V,LI W Q,et al. Progressive collapse and robustness of modular high-rise buildings[J]. Structure and Infrastructure Engineering,2023,19(3):302-314. DOI:10.1080/15732479.2021.1944226.
57
LUO F J,BAI Y,HOU J,et al. Progressive collapse analysis and structural robustness of steel-framed modular buildings[J]. Engineering Failure Analysis,2019,104:643-656. DOI:10.1016/j.engfailanal.2019.06.044.
58
PENG J H,HOU C,SHEN L M. Progressive collapse analysis of corner-supported composite modular buildings[J]. Journal of Building Engineering,2022,48:103977. DOI:10.1016/j.jobe.2021.103977.
59
ALEMBAGHERI M,SHARAFI P,TAO Z,et al. Robustness of multistory corner-supported modular steel frames against progressive collapse[J]. The Structural Design of Tall and Special Buildings,2021,30(18):e1896. DOI:10.1002/tal.1896.
60
ALEMBAGHERI M,SHARAFI P,HAJIREZAEI R,et al. Collapse capacity of modular steel buildings subject to module loss scenarios:the role of inter-module connections[J]. Engineering Structures,2020,210:110373. DOI:10.1016/j.engstruct.2020.110373.
61
赵晶晶. 集装箱模块化建筑的抗连续倒塌性能分析[D]. 南京:东南大学,2016.
ZHAO Jingjing. Analysis on progressive collapse resistance of container building[D]. Nanjing:Southeast University,2016. (in Chinese)

基金

深圳市科技计划(CJGJZD20230724093302005)

评论

PDF(5374 KB)

Accesses

Citation

Detail

段落导航
相关文章

/