
基于深度强化学习的自动驾驶车辆专用道汇入引导
张健, 李青扬, 李丹, 姜夏, 雷艳红, 季亚平
基于深度强化学习的自动驾驶车辆专用道汇入引导
Merging guidance of exclusive lanes for connected and autonomous vehicles based on deep reinforcement learning
为满足自动驾驶车辆(CAV)与人工驾驶车辆混行过程中安全和效率的需求,自动驾驶车辆专用道应运而生。当高速公路内侧车道设为自动驾驶车辆专用道时,引导自动驾驶车辆从普通车道汇入至专用道的策略研究具有重要的理论意义和实际价值。首先,设计专用道入口并提出车辆控制规则;其次,以使更多自动驾驶车辆换道至专用道为目标,基于深度强化学习,选择换道信号动作引导车辆换道;最后,通过Python语言编译进行数值仿真验证。结果表明:在自动驾驶车辆渗透率、到达专用道自动驾驶车辆比例等不同因素构建的9种场景下,本文算法能够快速收敛;能够有效引导自动驾驶车辆汇入专用道,保证通行效率;相较无信号控制情况,渗透率为20%~40%时,第2车道交通拥堵显著减少;在两段式专用道入口场景下,CAV换道至专用道的比例比单入口场景明显提高。所提出的策略具有较好的适用性,能为工程建设提供参考借鉴。
Exclusive lanes for connected and autonomous vehicles(CAVs) will emerge in order to ensure the safety and efficiency requirements in the process of traffic flow mixed with human-driving vehicles and CAVs. When the inner lane of the expressway is set as the exclusive lane for CAVs, it has important theoretical significance and practical value to study the strategy of guiding CAVs to merge from the ordinary lane to the exclusive lane. Firstly, the entrance area of exclusive lane was designed and vehicle control rules were proposed. Secondly, with the goal of making more CAVs change lanes to the exclusive lane, the strategy of selecting lane-changing signal actions was proposed based on deep reinforcement learning. Finally, the numerical simulation was carried out with Python language compilation. The results show that the proposed algorithm can converge very quickly under 9 scenarios constructed by different factors, such as the CAV penetration rates and the proportion of CAVs arriving at the exclusive lane; it can effectively guide CAVs to merge into exclusive lanes and ensure traffic efficiency; congestion in the second lane can be significantly reduced compared to the unsignalized control when the penetration rate changes from 20% to 40%; the proportion of CAVs changing to the exclusive lane is significantly higher under the two exclusive lane entrances scenario than that under the one entrance scenario. It shows that the proposed strategy has good applicability and can provide reference for engineering construction.
交通运输系统工程 / 汇入引导策略 / 深度强化学习 / 高速公路专用道 / 信号控制 / 自动驾驶汽车
engineering of transportation system / merging guidance strategy / deep reinforcement learning / expressway exclusive lane / signal control / connected and autonomous vehicle
U491
1 |
秦严严, 王昊, 王炜. 智能网联环境下的混合交通流LWR模型[J]. 中国公路学报, 2018, 31(11): 147-156.
|
2 |
|
3 |
|
4 |
杜豫川, 刘成龙, 吴荻非, 等. 新一代智慧高速公路系统架构设计[J]. 中国公路学报, 2022, 35(4): 203-214.
|
5 |
|
6 |
冉斌, 谭华春, 张健, 等. 智能网联交通技术发展现状及趋势[J]. 汽车安全与节能学报, 2018, 9(2): 119-130.
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
陈德望, 王飞跃, 陈龙. 基于模糊神经网络的城市高速公路入口匝道控制算法[J]. 交通运输工程学报, 2003(2): 100-105.
|
17 |
曾筠程, 邵敏华, 孙立军, 等. 基于有向图卷积神经网络的交通预测与拥堵管控[J]. 中国公路学报, 2021, 34(12): 239-248.
|
18 |
|
19 |
|
20 |
郑思. 面向快速道路远距离瓶颈的深度强化学习交通流控制策略研究[D]. 南京:东南大学交通学院, 2021.
|
21 |
|
22 |
葛家丽. 基于车辆簇的高速公路路侧单元部署研究[D]. 济南: 山东科技大学交通学院, 2020.
|
23 |
陈瑜. 高速公路作业区安全分析及交通组织管理方法研究[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2006.
|
24 |
石茂清. 道路交通安全设施设计研究[D]. 成都: 西南交通大学交通运输与物流学院, 2005.
|
25 |
孙玲, 张静, 周瀛, 等. 车路协同环境下自动驾驶专用车道入口区域设计[J]. 公路交通科技, 2020, 37(): 122-129.
增刊1
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
武毅. 基于三相交通流理论的元胞自动机模型研究[D]. 长春: 吉林大学交通学院, 2018.
|
31 |
舒凌洲, 吴佳, 王晨. 基于深度强化学习的城市交通信号控制算法[J]. 计算机应用, 2019, 39(5): 1495-1499.
|
/
〈 |
|
〉 |