基于多尺度特征和注意力机制的轻量级虹膜分割模型

霍光, 林大为, 刘元宁, 朱晓冬, 袁梦, 盖迪

PDF(1803 KB)
PDF(1803 KB)
吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (09) : 2591-2600. DOI: 10.13229/j.cnki.jdxbgxb.20220044
计算机科学与技术

基于多尺度特征和注意力机制的轻量级虹膜分割模型

作者信息 +

Lightweight iris segmentation model based on multiscale feature and attention mechanism

Author information +
History +

摘要

针对基于深度学习的虹膜分割模型存在参数量大、计算量大、占用空间大的问题,提出了一种轻量级的虹膜分割模型。首先,将Linknet中特征提取网络替换为改进的轻量级网络MobileNetv3。这种设计在保持准确性的同时显著地提高了模型效率。其次,为了减少虹膜特征信息丢失,设计了一个多尺度特征提取模块。再次,引入了通道注意力机制,抑制无关噪声,加大虹膜区域的权重。最后,在3个虹膜数据库上将本文模型与其他虹膜分割模型进行比较,结果表明,本文模型在虹膜分割准确率和效率之间取得了更好的平衡。

Abstract

Aiming at the problem that deep learning-based iris segmentation models need a large number of parameters, computation cost, and space occupation, a lightweight iris segmentation model is proposed in this paper. First, the feature extraction network of Linknet is replaced with the improved lightweight deep neural network MobileNetv3. This design significantly improves the efficiency of the model while maintaining accuracy. Then, in order to reduce the loss of iris feature information, a multiscale feature extraction module is designed in this paper. Once again, an efficient parallel attention mechanism is introduced to suppress noise interference and enhance the weight of iris region pixels. Finally, the proposed model was compared with other iris segmentation models on three iris databases, and the results showed that the model achieved a better balance between iris segmentation accuracy and efficiency.

关键词

计算机应用 / 虹膜分割 / 深度学习 / 轻量级网络 / 注意力机制 / 多尺度特征

Key words

computer application / iris segmentation / deep learning / lightweight network / attention mechanism / multiscale feature

中图分类号

TP391.41

引用本文

导出引用
霍光 , 林大为 , 刘元宁 , . 基于多尺度特征和注意力机制的轻量级虹膜分割模型. 吉林大学学报(工学版). 2023, 53(09): 2591-2600 https://doi.org/10.13229/j.cnki.jdxbgxb.20220044
HUO Guang, LIN Da-wei, LIU Yuan-ning, et al. Lightweight iris segmentation model based on multiscale feature and attention mechanism[J]. Journal of Jilin University(Engineering and Technology Edition). 2023, 53(09): 2591-2600 https://doi.org/10.13229/j.cnki.jdxbgxb.20220044

参考文献

1
Arsalan M, Naqvi R A, Kim D S, et al. IrisDenseNet: robust iris segmentation using densely connected fully convolutional networks in the images by visible light and near-infrared light camera sensors[J]. Sensors, 2018, 18(5): No.1501.
2
Huo Guang, Lin Da-wei, Yuan Meng, et al. Heterogeneous iris segmentation method based on modified U-Net[J]. Journal of Electronic Imaging, 2021, 30(6): No.063015.
3
Umer S, Dhara B C. A fast iris localization using inversion transform and restricted circular hough transform[C]//Proceedings of the 2015 8th International Conference on Advances in Pattern Recognition, Kolkata, India, 2015: 1-6.
4
Bendale A, Nigam A, Prakash S, et al. Iris segmentation using improved hough transform[C]//Proceedings of the 8th International Conference on Intelligent Computing, Huangshan, China, 2012: 408-415.
5
Roy D A, Soni U S. IRIS segmentation using Daughman's method[C]//Proceedings of the 2016 International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, India, 2016: 2668-2676.
6
周锐烨, 沈文忠. PI-Unet: 异质虹膜精确分割神经网络模型的研究[J]. 计算机工程与应用, 2021, 57(15): 223-229.
Zhou Rui-ye, Shen Wen-zhong. PI-Unet: research on precise iris segmentation neural network model for heterogeneous iris[J]. Computer Engineering and Applications, 2021, 57(15): 223-229.
7
Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
8
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]//Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241.
9
Chaurasia A, Culurciello E. LinkNet: exploiting encoder representations for efficient semantic segmentation[C]//Proceedings of the 2017 IEEE Visual Communications and Image Processing, Petersburg, USA, 2017: 1-4
10
Chen Ying, Wang Wen-yuan, Zeng Zhuang, et al. An adaptive CNNs technology for robust iris segmentation[J]. IEEE Access, 2019, 7: 64517-64532.
11
Wang Cai-yong, Wang Yun-long, Xu Bo-qiang, et al. A lightweight multi-label segmentation network for mobile iris biometrics[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1006-1010.
12
Zhong Z L, Lin Z, Bidart R, et al. Squeeze-and-attention networks for semantic segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 13062-13071.
13
Biometrics ideal test. CASIA.v4 Database[DB/OL]. [2022-01-06].
14
Kumar A, Passi A. Comparison and combination of iris matchers for reliable personal authentication[J]. Pattern Recognition, 2010, 43(3): 1016-1026.
15
Proena H, Filipe S, Santos R, et al. The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8): 1529-1535.
16
Milletari F, Navab N, Ahmadi S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 2016 4th International Conference on 3D Vision, Stanford, USA, 2016: 565-571.
17
Rathgeb C. Iris Biometrics from Segmentation to Template Security[M]. Iris Biometrics: From Segmentation to Template Security, 2012.
18
Wild P, Hofbauer H, Ferryman J, et al. Segmentation-level fusion for iris recognition[C]//Proceedings of the 2015 International Conference of the Biometrics Special Interest Group, Darmstadt, Germany, 2015: 1-6.
19
Uhl A, Wild P. Weighted adaptive hough and ellipsopolar transforms for real-time iris segmentation[C]//Proceedings of the 2012 5th IAPR International Conference on Biometrics, New Delhi, India, 2012: 283-290.
20
A biometric reference system for iris, ersion osiris V 4.1[EB/OL]. [2022-01-06].
21
Uhl A, Wild P. Multi-stage visible wavelength and near infrared iris segmentation framework[C]//Proceedings of the International Conference Image Analysis and Recognition, Aveiro, Portugal, 2012: 1-10.
22
Ahmad S, Fuller B. Unconstrained iris segmentation using convolutional neural networks[C]//Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2018: 450-466.
23
Alonsofern J O. Iris boundaries segmentation using the generalized structure tensor—a study on the effects of image degradation[C]//Proceedings of the 2012 5th IEEE International Conference on Biometrics: Theory, Applications and Systems, Arlington, USA, 2012: 426-431.
24
Ehsaneddin J, Andreas U. Iris segmentation using fully convolutional encoder-decoder Networks[C]//Proceedings of the Computer Vision and Pattern Recognition, New York, USA, 2017: 133-155.
25
尤轩昂, 赵鹏, 慕晓冬, 等. 融合注意力机制与密集多尺度特征的异质噪声虹膜分割方法[J]. 激光与光电子学进展,2022, 59(4): 109-120
You Xuan-ang, Zhao Peng, Mu Xiao-dong, et al. Heterogeneous noise iris segmentation based on attention mechanism and dense multi-scale features[J]. Laser & Optoelectronics Progress, 2022, 59(4): 109-120.
26
Lozej J, Meden B, Struc V, et al. End-to-end iris segmentation using U-Net[C]//Proceedings of the 2018 IEEE International Work Conference on Bioinspired Intelligence,San Carlos, Costa Rica, 2018: 1-6.
27
Zhang Wei, Lu Xiao-qi, Gu Yu, et al. A robust iris segmentation scheme based on improved U-Net[J]. IEEE Access, 2019, 7: 85082-85089.
28
Wang Qi, Meng Xiang-yue, Sun Ting, et al. A light iris segmentation network[J]. The Visual Computer, 2021, 38: 2591-2601.
29
He Kai-ming, Zhang Xiang-yu, Ren Shao-qiang, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778.

基金

吉林省教育厅科学技术研究项目(JJKH20220118KJ)

评论

PDF(1803 KB)

Accesses

Citation

Detail

段落导航
相关文章

/