柴油机瞬变工况喷射参数及田口法协同优化对微粒排放的影响

冯爽, 洪伟, 李小平, 解方喜

PDF(2344 KB)
PDF(2344 KB)
吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (09) : 2483-2492. DOI: 10.13229/j.cnki.jdxbgxb.20211236
车辆工程·机械工程

柴油机瞬变工况喷射参数及田口法协同优化对微粒排放的影响

作者信息 +

Effects of injection parameters and taguchi method on particulate emissions of diesel engine under transient conditions

Author information +
History +

摘要

为研究发动机“恒转增扭”瞬变工况下的微粒排放特性及优化方法,以车用2.8 L增压柴油机为研究对象,首先研究了单因素喷射参数对柴油机瞬态加载工况微粒排放的影响;随后设计了田口正交试验,给出以微粒数量及质量为输出指标的最优控制参数组合,并确定了各控制参数的影响权重。结果表明:在瞬变加载过程中,小尺寸核态颗粒物数量浓度恶化明显,大尺寸聚集态颗粒物质量浓度显著恶化;适当地将主喷时刻提前、增大轨压以及引入恰当的后喷可降低微粒排放;同时,控制参数对核态和聚集态微粒的影响存在Trade-off关系,对微粒排放影响权重相对较大的均为喷油时刻的影响,即喷油正时和主后喷间隔。

Abstract

To study the particulate emissions characteristics and optimization methods of the engine under transient conditions, takes a 2.8 L turbocharged diesel engine as the research object. Firstly, the effects of single factor injection parameters on the particulate emissions under transient loading conditions were studied. Then,Taguchi orthogonal experiment was designed to give the optimal control parameter combination with the number and quality of particles, and the influence weight of each control parameter was determined. The results show that during the transient loading process, the number and concentration of small-sized nuclear particles deteriorated significantly, and the mass concentration of large-sized accumulated particles deteriorated significantly; Appropriately advancing the injection timing, increasing the injection pressure and the introduction of post-injection can reduce particulate emissions; Meanwhile, the effect of control parameters on nuclear and accumulated particulates has a trade-off relationship, and the relatively large weight of particulate emissions is the effect of fuel injection timing, that is the factor of injection timing and post injection interval.

关键词

柴油机 / 瞬变工况 / 微粒排放 / 喷射参数 / 协同优化

Key words

diesel engine / transient conditions / particle emission / injection parameters / collaborative optimization

中图分类号

TK421.5

引用本文

导出引用
冯爽 , 洪伟 , 李小平 , . 柴油机瞬变工况喷射参数及田口法协同优化对微粒排放的影响. 吉林大学学报(工学版). 2023, 53(09): 2483-2492 https://doi.org/10.13229/j.cnki.jdxbgxb.20211236
FENG Shuang, HONG Wei, LI Xiao-ping, et al. Effects of injection parameters and taguchi method on particulate emissions of diesel engine under transient conditions[J]. Journal of Jilin University(Engineering and Technology Edition). 2023, 53(09): 2483-2492 https://doi.org/10.13229/j.cnki.jdxbgxb.20211236

参考文献

1
Nilsson T, Froberg A, Aslund J. Optimal operation of a turbocharged diesel engine during transients[J] SAE International Journal of Engines, 2012,5(2): 571-578.
2
隋菱歌. 增压柴油机瞬态工况性能仿真及优化[D].长春:吉林大学汽车工程学院,2012.
Sui Ling-ge. Simulation and optimization of turbo charged diesel engine performance under transient operations[D]. Changchun; College of Automotive Engineering, Jilin University, 2012.
3
Rakopoulos C D, Michos C N, Giakoumis E G. Study of the transient behavior of turbocharged diesel engines including compressor surging using a linearized quasi-steady analysis[C]//SAE Paper, 2005-01-0225.
4
Rakopoulos C D, GiakoumisE G, Rakopoulos D C. The effect of friction modelling on the prediction of turbocharged diesel engine transient operation[C]//SAE Paper, 2004-01-0925.
5
Grahn M, Johansson K, McKelvey T. Model-based diesel engine management system optimization for transient engine operation[J]. Control Engineering Practice, 2014, 29: 103-114.
6
Atkinson C, Allain M, Zhang H. Using model-based rapid transient calibration to reduce fuel consumption and emissions in diesel engines[C]//SAE Paper, 2008-01-1365.
7
Atkinson C, Mott G. Dynamic model-based calibration optimization: an introduction and application to diesel engines[C]//SAE Paper, 2005-01-0026, 2005.
8
Liu S, Cui Y, Wang Y, et al. An evaluation method for transient response performance of turbocharged diesel engines[J]. Energy, 2019, 182:852-863.
9
付建勤. 车用发动机瞬变工况运行与性能参数连续检测及热功转换过程研究[D]. 长沙:湖南大学机械与运载工程学院, 2014.
Fu Jian-qin. Continuous detecting on the operating and performance parameters of automotive engine under transient conditions and study of the heat-work conversion process[D]. Changsha; College of Mechanical and Vehicle Engineering, Hunan University, 2014.
10
张龙平. 车用柴油机瞬变工况性能劣变及其控制策略研究[D]. 长春:吉林大学汽车工程学院,2015.
Zhang Long-ping. Investigation of performance deterioration and control strategy of automotive diesel engine under transient operation conditions[D]. Changchun: College of Automotive Engineering, Jilin University, 2015.
11
刘长铖. 车用增压柴油机瞬变过程能量流及㶲流分析[D]. 长春:吉林大学汽车工程学院, 2020.
Liu Chang-cheng. Analysis of energy flow, exergy flow and optimization of energy efficiency in an automotive turbocharged diesel engine[D]. Changchun; College of Automotive Engineering, Jilin University, 2020.
12
Tan Pi-qiang, Ruan Shuai-shuai, Hu Zhi-yuan, et al. Particle number emissions from a light-duty diesel engine with biodiesel fuels under transient-state operating conditions[J]. Applied Energy, 2014, 113: 22-31.
13
谭丕强, 胡志远, 楼狄明, 等. 车用柴油机瞬变工况的排气颗粒数量[J]. 机械工程学报, 2012, 48(14): 134-140.
Tan Pi-qiang, Hu Zhi-yuan, Lou Di-ming. Quantity of exhaust particles in vehicle diesel engine under transient conditions[J]. Chinese Journal of Mechanical Engineering, 2012, 48(14): 134-140.
14
Sun Wan-chen, Wang Qiao, Guo Liang, et al. Influence of biodiesel/diesel blends on particle size distribution of CI engine under steady/transient conditions[J]. Fuel, 2019, 245: 336-344.
15
Zhang X B, Wang Z X, Xiao B, et al. A neural network learning-based global optimization approach for aero-engine transient control schedule[J]. Neurocomputing, 2021, 469: 180-188.
16
Zhang Miao-miao, Hong Wei, Xie Fang-xi, et al. Combustion, performance and particulate matter emissions analysis of operating parameters on a GDI engine by traditional experimental investigation and Taguchi method[J]. Energy Conversion and Management, 2018, 164: 344-352.
17
Uslu S, Yaman H, Yesilyurt M K. Optimization of parameters affecting the performance and emissions of a spark ignition engine fueled with n-pentanol/gasoline blends using taguchi method[J]. Arabian Journal for Science and Engineering, 2021, 46(12): 11711-11724.

基金

吉林省教育厅科学研究项目(JJKH20221002KJ)
吉林大学汽车底盘集成与仿生全国重点实验室自由探索项目(sacl-zytsxm-202014)

评论

PDF(2344 KB)

Accesses

Citation

Detail

段落导航
相关文章

/