
拟合下肢几何特征的多视角步态周期检测
张云佐, 董旭, 蔡昭权
拟合下肢几何特征的多视角步态周期检测
Multi view gait cycle detection by fitting geometric features of lower limbs
针对现有步态周期检测方法易受拍摄视角变化影响的问题,提出了一种拟合下肢几何特征的多视角步态周期检测方法。首先,利用MediaPipe模型提取步态视频序列中的人体姿态拓扑图,简化了图像预处理过程。然后,通过分析行走状态下人体下肢姿态拓扑图中各关节点间存在的周期性动态变化规律,将左小腿与水平地面构成的倾角以及中髋点(mid-hip)到左、右脚踝的欧氏距离比值作为特征进行提取。最后,采用傅里叶变换将特征数据拟合为正弦函数,并基于拟合结果进行步态周期检测。相比于当前主流的步态周期检测方法,本文方法在正、背面视角以及斜视角下都取得了较好的检测结果。
A multi view gait cycle detection method fitting the geometric features of lower limbs is proposed to address the issue of existing gait cycle detection methods being susceptible to changes in shooting angles. Firstly, the human posture topology in the gait video sequence was extracted by the MediaPipe model, simplifying the image preprocessing process. Then, by analyzing the periodic dynamic change law between the joint points in the human posture topology map under walking state, the inclination formed by the left shin and the horizontal ground and the Euclidean distance ratio from the midpoint of the left and right hip joints to the left and right ankle are extracted as features. Finally, the feature data were fitted into sinusoidal function waves by Fourier transform, and the gait period is detected based on the fitting results. Compared with the current mainstream gait cycle detection methods, the proposed method has achieved good front and back view and strabismus angle detection results.
计算机应用 / 步态周期检测 / 多视角检测 / 姿态几何特征 / 步态识别 / 傅里叶变换
computer application / gait cycle detection / multi view detection / pose geometric features / gait recognition / Fourier transform
TP391
1 |
李贻斌, 郭佳旻, 张勤. 人体步态识别方法与技术[J]. 吉林大学学报: 工学版, 2020, 50(1): 1-18.
|
2 |
|
3 |
王科俊, 刘亮亮, 丁欣楠, 等. 基于卷积神经网络的步态周期检测方法[J]. 哈尔滨工程大学学报, 2021, 42(5): 656-663.
|
4 |
汤荣山, 葛万成. 基于卷积神经网络和不完整步态周期的步态识别方法[J]. 通信技术, 2018, 51(12): 2980-2985.
|
5 |
|
6 |
王科俊, 贲晛烨, 唐墨, 等. 基于区域特征分析的步态周期检测方法[P]. 中国: CN200910072171.4, 2011-3-16.
|
7 |
杨佩成. 面向术后康复的可穿戴步态监测与分析技术研究[D]. 南京: 南京大学计算机科学与技术系, 2020.
|
8 |
|
9 |
陈法权. 基于可穿戴传感器的人体下肢动作识别及预测[D]. 乌鲁木齐: 新疆大学机械工程学院, 2020.
|
10 |
闫河, 罗成, 李焕, 等. 基于步态能量图与VGG结合的步态识别方法[J]. 重庆理工大学学报: 自然科学, 2020, 34(5): 166-172.
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
唐云祁, 薛傲, 丁建伟, 等. 基于帧差时空特征的步态周期检测方法[J]. 数据采集与处理, 2017, 32(3): 533-539.
|
16 |
|
17 |
|
18 |
李一波, 李昆. 双视角下多特征信息融合的步态识别[J]. 智能系统学报, 2013, 8(1): 74-79.
|
19 |
王新年, 胡丹丹, 张涛, 等. 姿态特征结合2维傅里叶变换的步态识别[J]. 中国图象图形学报, 2021, 26(4): 796-814.
|
/
〈 |
|
〉 |