融合社交地理信息加权矩阵分解的兴趣点推荐算法

何颖, 王卓然, 周旭, 刘衍珩

PDF(1067 KB)
PDF(1067 KB)
吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (09) : 2632-2639. DOI: 10.13229/j.cnki.jdxbgxb.20211201
计算机科学与技术

融合社交地理信息加权矩阵分解的兴趣点推荐算法

作者信息 +

Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization

Author information +
History +

摘要

针对用户-兴趣点矩阵稀疏以及难于从隐反馈中获取用户对未访问位置的偏好而影响兴趣点推荐准确度的问题,本文提出了一种融合社交地理位置信息的加权矩阵分解兴趣点推荐算法(SGWMF)。首先,通过用户之间的相关性对社交信息进行幂律分布建模,基于用户好友的签到信息计算用户访问位置概率;其次,利用地理信息符合幂律分布特点重构用户访问位置偏好矩阵,缓解矩阵数据稀疏性问题;再次,为了增强加权矩阵分解模型的有效性,通过建模社交信息和地理信息挖掘出用户对未访问位置的偏好,并以隐反馈项的形式改进加权矩阵分解的目标函数;最后,在两个真实数据集上对算法性能进行对比验证,结果表明本文算法的性能要优于其他兴趣点推荐算法,推荐结果的准确性有明显提高。

Abstract

The point-of-interest (POI) recommendation services provided by the location-based social network (LBSN) have become an important means of mining users' preference for POIs. The sparsity of user-POI matrix is the primary problem to be solved, and a large number of unknown values in implicit feedback cannot reflect user preferences. To improve recommendation precision, this paper proposes a point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization (SGWMF). The social information is modeled through the power-law distribution. The check-in information of the user's friends is converted into the user's visit location preference. Secondly, the power-law distribution of geographical information is used to construct the user's visit location preference matrix to alleviate the data sparsity problem. Thirdly, in order to extend the effectiveness of the model, we improve the objective function by adding implicit feedback term. Finally, the experimental results on two datasets show that it has better performance than other POI recommendation algorithms and can improve the accuracy of recommendation results.

关键词

计算机应用 / 社交地理信息 / 加权矩阵分解 / 兴趣点推荐

Key words

computer application / social geographical information / weighted matrix factorization / point-of-interest (POI) recommendation

中图分类号

TP391

引用本文

导出引用
何颖 , 王卓然 , 周旭 , . 融合社交地理信息加权矩阵分解的兴趣点推荐算法. 吉林大学学报(工学版). 2023, 53(09): 2632-2639 https://doi.org/10.13229/j.cnki.jdxbgxb.20211201
HE Ying, WANG Zhuo-ran, ZHOU Xu, et al. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization[J]. Journal of Jilin University(Engineering and Technology Edition). 2023, 53(09): 2632-2639 https://doi.org/10.13229/j.cnki.jdxbgxb.20211201

参考文献

1
Zhao S, King I, Lyu M R. A Survey of Point-of-interest Recommendation in Location-based social Networks[J/OL]. [2021-11-05].
2
程龙, 李涵. 基于矩阵分解的推荐算法研究综述[J]. 北京信息科技大学学报: 自然科学版, 2021, 36(2): 38-45, 51.
Cheng Long, Li Han. A review of recommendation algorithms based on matrix factorization[J]. Journal of Beijing Information Science & Technology University, 2021, 36(2): 38-45, 51.
3
张青博, 王斌, 崔宁宁, 等. 基于注意力机制的规范化矩阵分解推荐算法[J].软件学报, 2020, 31(3): 778-793.
Zhang Qing-bo, Wang Bin, Cui Ning-ning, et al. Attention-based regularized matrix factorization for recommendation[J]. Journal of Software, 2020, 31(3): 778-793.
4
Ma H, Zhou D, Liu C, et al. Recommender systems with social regularization[C]//Proceedings of the Forth International Conference on Web Search and Web Data Mining, WSDM, Hong Kong, China, 2011: 287-296.
5
Xu C, Ding AS, Zhao K. A novel POI recommendation method based on trust relationship and spatial-temporal factors[J]. Electronic Commerce Research & Applications, 2021, 48: 101060.
6
任星怡, 宋美娜, 宋俊德. 基于位置社交网络的上下文感知的兴趣点推荐[J]. 计算机学报, 2017, 40(4): 824-841.
Ren Xing-yi, Song Mei-na, Song Jun-de. Context-aware point-of-interest recommendation in location-based social networks[J]. Chinese Journal of Computers, 2017, 40(4): 824-841.
7
李昆仑, 翟利娜, 赵佳耀, 等. 融合信任关系与评论文本的矩阵分解推荐算法[J]. 小型微型计算机系统, 2021, 42(2): 285-290.
Li Kun-lun, Zhai Li-na, Zhao Jia-yao, et al. Matrix factorization recommendation algorithms by exploiting trust relationship and review text[J]. Journal of Chinese Computer Systems, 2021, 42(2): 285-290.
8
Hu Y, Volinsky K Y. Collaborative filtering for implicit feedback datasets[C]//2008 8th IEEE International Conference on Data Mining, Pisa, Italy, 2008: 263-272.
9
Lian D, Zhao C, Xie X, et a1. GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation[C]//ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, New York, USA, 2014: 831-840.
10
Guo L, Wen Y, Liu F. Location perspective-based neighborhood-aware POI recommendation in location-based social networks[J]. Soft Computing, 2019, 23(22): 11935-11945.
11
夏英, 张金凤. 融合社交关系和局部地理因素的兴趣点推荐[J].计算机工程与应用, 2021, 57(15): 133-139.
Xia Ying, Zhang Jin-feng. POI Recommendation fusing social relations and local geographic factors[J]. Computer Engineering and Applications, 2021, 57(15): 133-139.
12
Cheng C, Yang H, King I, et a1. Fused matrix factorization with geographical and social influence in location-based social networks[C]//AAAI Conference on Artificial Intelligence, Ontario, Canada, 2012: 17-23.
13
Liu B, Xiong H, Papadimitriou S, et a1. A general geographical probabilistic factor model for point of interest recommendation[J].IEEE Transactions on Knowledge & Data Engineering, 2015, 27(5): 1167-1179.
14
Liu Y, Wei W, Sun A, et a1. Exploiting geographical neighborhood characteristics for location recommendation [C]//CIKM'14:Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, Shanghai, China, 2014: 739-748.

基金

国家自然科学基金项目(61806083)
中央高校基本科研业务费项目(93K172021Z02)

评论

PDF(1067 KB)

Accesses

Citation

Detail

段落导航
相关文章

/