
仿生扑翼微型飞行器动态避障策略
郑皓, 余立均, 智鹏鹏, 汪忠来
仿生扑翼微型飞行器动态避障策略
Dynamic obstacle avoidance strategy for flapping-wing micro air vehicles
针对仿生扑翼微型飞行器飞行过程中的动态避障问题,提出了一种全局静态路径规划与局部动态路径规划相结合的避障路径规划策略。首先,综合考虑仿生扑翼微型飞行器的性能及其飞行环境,定义了路径规划的约束条件和代价函数,构建了全局静态避障的综合代价模型;其次,在此基础上考虑了动态障碍对其飞行性能的影响,提出基于时间窗口的碰撞约束,建立了融合局部动态避障规划的综合代价模型;最后,提出了改进蚁群算法,对综合全局静态路径规划与局部动态路径规划的避障路径规划进行优化求解。结果表明:本文综合动态避障路径规划策略可以有效地解决仿生扑翼微型飞行器在先验地图下的动态避障问题,一定程度上改进了动态障碍物下的避障路径寻优的不足;本文改进蚁群算法提升了动态路径寻优效率,保证了仿生扑翼微型飞行器避障控制的实时性要求。
Aiming at the dynamic obstacle avoidance problem during the flying process of the Flapping-wing Micro Air Vehicle (FWMAV), a novel obstacle avoidance scheduling strategy integrating the global path planning and the locally dynamic path planning is proposed in this paper. The static comprehensive cost model is first built by considering both the performance constraints of the FWMAV and its threat constraints during the flight environment. Based on the static cost model, a time-varying collision constraint between the FWMAV and dynamic obstacles is defined and then the dynamic comprehensive cost model for the local obstacle avoidance is established. The improved ant colony algorithm is proposed for the obstacle avoidance scheduling strategy optimization. The results show that the proposed method can effectively handle the dynamic obstacle avoidance scheduling problem of the FWMAV under the known map and improve the dynamic obstacle avoidance scheduling strategy under the dynamic obstacles; meanwhile the improved ant colony algorithm can promote the efficiency of the dynamic path optimization to ensure the real-time requirement of the obstacle avoidance control of the FWMAV.
flapping-wing micro air vehicle / cost model / obstacle avoidance strategy / dynamic path planning
V276
1 |
|
2 |
|
3 |
|
4 |
霍凤财, 迟金, 黄梓健, 等. 移动机器人路径规划算法综述[J]. 吉林大学学报: 工学版, 2018, 36(6): 639-647.
|
5 |
|
6 |
程谦, 高嵩, 曹凯, 等. 基于PRM优化算法的移动机器人路径规划[J]. 计算机应用与软件, 2020, 37(12): 254-259.
|
7 |
|
8 |
林韩熙, 向丹, 欧阳剑, 等. 移动机器人路径规划算法的研究综述[J]. 计算机工程与应用, 2021, 57(18): 38-48.
|
9 |
戴健, 许菲, 陈琪锋. 多无人机协同搜索区域划分与路径规划[J]. 航空学报, 2020, 41(): 149-156.
增刊1
|
10 |
李波, 杨志鹏, 贾卓然, 等. 一种无监督学习型神经网络的无人机全区域侦察路径规划[J]. 西北工业大学学报, 2021, 39(1): 77-84.
|
11 |
王巍, 梁桥. 基于单目视觉和惯性测量的飞行器自定位研究[J]. 吉林大学学报: 工学版, 2016, 34(6): 774-780.
|
12 |
王晓东, 张永强, 薛红. 基于改进蚁群算法对VRP线路优化[J]. 吉林大学学报: 工学版, 2017, 35(2): 198-203.
|
13 |
|
14 |
|
15 |
|
16 |
余立均. 仿生扑翼微型飞行器路径规划研究[D]. 成都: 电子科技大学航空学院, 2021.
|
/
〈 |
|
〉 |