
基于动态图卷积的图像情感分布预测
苏育挺, 王骥, 赵玮, 井佩光
基于动态图卷积的图像情感分布预测
Dynamic graph convolutional neural network for image sentiment distribution prediction
针对图像情感分布学习中,视觉特征与高阶情感语义之间存在语义鸿沟以及情感标签具有主观性和模糊性的问题,提出了一种情感语义动态图卷积网络模型。该模型通过情感激活模块自动定位情感语义区域,从而有效挖掘契合情感语义的内容表征;通过动态图卷积模块自适应地捕获图像情感标签之间的语义关联性;最终构建并行结构输出联合局部语义和标签相关性的情感预测分布。在3个公开情感数据集上的实验结果证明了本文算法在图像情感分布预测任务中的有效性。
Aiming at the problem that there exists semantic gap between visual features and high-level emotional semantics and the subjectivity and ambiguity of emotional labels in image sentiment distribution learning, this paper proposes an Emotional Semantic Dynamic Graph Convolution Network (ESDGCN). In this framework, the Emotion Activation Module (EAM) is constructed to automatically locate the emotional semantic regions to effectively mine the content representation that fits the emotional semantics. In addition, the Semantic Dynamic Graph Convolution Network (SDGCN) is to adaptively capture the semantic relevance between labels. Finally, we adopt the parallel structure to jointly consider local semantic emotional information and label correlations. Experimental results on three open emotional datasets demonstrate the effectiveness of the proposed method.
信息处理技术 / 视觉情感计算 / 动态图卷积 / 标签分布式学习
information processing technology / visual sentiment computing / dynamic graph convolution / label distribution learning
TP391
1 |
|
2 |
|
3 |
卢洋, 王世刚, 赵文婷, 等. 基于离散Shearlet类别可分性测度的人脸表情识别方法[J].吉林大学学报: 工学版, 2019, 49(5): 1715-1725.
|
4 |
方明, 陈文强. 结合残差网络及目标掩膜的人脸微表情识别[J].吉林大学学报: 工学版, 2021, 51(1): 303-313.
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
缪裕青, 雷庆庆, 张万桢, 等. 多视觉目标融合的图像情感分析研究[J]. 计算机应用研究, 2021, 38(4): 1250-1255.
|
28 |
盛家川, 陈雅琦, 王君, 等. 深度学习结构优化的图像情感分类[J]. 红外与激光工程, 2020, 49(11): 264-273.
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
|
34 |
|
35 |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J].计算机学报, 2020, 43(5): 755-780.
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
/
〈 |
|
〉 |