Clinical application principles and new developments of zirconia crown

Wang Jian, Yang Linxin

PDF(729 KB)
PDF(729 KB)
West China Journal of Stomatology ›› 2024, Vol. 42 ›› Issue (2) : 135-141. DOI: 10.7518/hxkq.2024.2023404
Special Review

Clinical application principles and new developments of zirconia crown

  • Wang Jian(), Yang Linxin
Author information +
History +

Abstract

Zirconia crown has been widely used in the field of prosthodontics. Traditional zirconia exhibits excellent mechanical properties but lacks translucency. The introduction of transparent zirconia significantly enhances its aesthetic performance. In clinical applications, factors affecting the aesthetic results of full zirconia crown should be comprehensively considered, and the most suitable restoration should be chosen. Additionally, clinicians need to design appropriate tooth preparation dimensions and methods based on an individual patient’s actual situation. During the clinical bonding process of zirconia, proper surface treatment of the tooth and restoration is essential. The selection of suitable adhesives is crucial for achieving optimal bonding strength and aesthetics.

Key words

zirconia crown / mechanical property / aesthetic performance / tooth preparation / bonding

CLC number

R783.1

Cite this article

Download Citations
Wang Jian, Yang Linxin. Clinical application principles and new developments of zirconia crown. West China Journal of Stomatology. 2024, 42(2): 135-141 https://doi.org/10.7518/hxkq.2024.2023404

References

1 Stawarczyk B, Keul C, Eichberger M, et al. Three generations of zirconia: from veneered to monolithic. PartⅡ[J]. Quintessence Int, 2017, 48(6): 441-450.
2 万乾炳. 口腔氧化锆修复材料分代之我见[J]. 国际口腔医学杂志, 2021, 48(2): 125-128.
2 Wan QB. My opinion on the generations of dental zirconia materials[J]. Int J Stomatol, 2021, 48(2): 125-128.
3 Ghodsi S, Jafarian Z. A review on translucent zirconia[J]. Eur J Prosthodont Restor Dent, 2018, 26(2): 62-74.
4 Camposilvan E, Leone R, Gremillard L, et al. Aging resistance, mechanical properties and translucency of different yttria-stabilized zirconia ceramics for monolithic dental crown applications[J]. Dent Mater, 2018, 34(6): 879-890.
5 Jerman E, Lümkemann N, Eichberger M, et al. Evaluation of translucency, Marten’s hardness, biaxial flexural strength and fracture toughness of 3Y-TZP, 4Y-TZP and 5Y-TZP materials[J]. Dent Mater, 2021, 37(2): 212-222.
6 Stawarczyk B, ?zcan M, Hallmann L, et al. The effect of zirconia sintering temperature on flexural strength, grain size, and contrast ratio[J]. Clin Oral Investig, 2013, 17(1): 269-274.
7 Jansen JU, Lümkemann N, Letz I, et al. Impact of high-speed sintering on translucency, phase content, grain sizes, and flexural strength of 3Y-TZP and 4Y-TZP zirconia materials[J]. J Prosthet Dent, 2019, 122(4): 396-403.
8 Pereira GKR, Fraga S, Montagner AF, et al. The effect of grinding on the mechanical behavior of Y-TZP ceramics: a systematic review and meta-analyses[J]. J Mech Behav Biomed Mater, 2016, 63: 417-442.
9 Lai X, Si WJ, Jiang DY, et al. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia[J]. J Dent, 2017, 66: 23-31.
10 Tzanakakis E, Kontonasaki E, Voyiatzis G, et al. Surface characterization of monolithic zirconia submitted to different surface treatments applying optical interferometry and raman spectrometry[J]. Dent Mater J, 2020, 39(1): 111-117.
11 Coti? J, Jevnikar P, Kocjan A, et al. Complexity of the relationships between the sintering-temperature-dependent grain size, airborne-particle abrasion, ageing and strength of 3Y-TZP ceramics[J]. Dent Mater, 2016, 32(4): 510-518.
12 Aurélio IL, Marchionatti AM, Montagner AF, et al. Does air particle abrasion affect the flexural strength and phase transformation of Y-TZP? A systematic review and meta-analysis[J]. Dent Mater, 2016, 32(6): 827-845.
13 Tsuyuki Y, Sato T, Nomoto S, et al. Effect of occlusal groove on abutment, crown thickness, and cement-type on fracture load of monolithic zirconia crowns[J]. Dent Mater J, 2018, 37(5): 843-850.
14 Wu ZK, Li N, Yan JZ, et al. Effect of hydrothermal a-ging on the phase stability, microstructure and mechanical properties of dental 3Y-TZP ceramics[J]. Appl Mech Mater (Switzerland), 2014, 529: 251-255.
15 Wei C, Gong X, Xie C, et al. In vitro cyclic fatigue and hydrothermal aging lifetime assessment of yttria-stabilized zirconia dental ceramics[J]. J Eurn Ceram Soc, 2020, 40(13): 4647-4654.
16 Vichi A, Sedda M, Fabian Fonzar R, et al. Comparison of contrast ratio, translucency parameter, and flexural strength of traditional and “augmented translucency” zirconia for CEREC CAD/CAM system[J]. J Esthet Restor Dent, 2016, 28: S32-S39.
17 Stawarczyk B, Keul C, Eichberger M, et al. Three generations of zirconia: from veneered to monolithic. PartⅠ[J]. Quintessence Int, 2017, 48(5): 369-380.
18 Carrabba M, Keeling AJ, Aziz A, et al. Translucent zirconia in the ceramic scenario for monolithic restorations: a flexural strength and translucency comparison test[J]. J Dent, 2017, 60: 70-76.
19 Zhang F, Inokoshi M, Batuk M, et al. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations[J]. Dent Mater, 2016, 32(12): E327-E337.
20 Kim HK, Kim SH. Optical properties of pre-colored dental monolithic zirconia ceramics[J]. J Dent, 2016, 55: 75-81.
21 Nam JY, Park MG. Effects of treatment with aqueous and acid-based coloring liquid on the color of zirconia[J]. J Prosthet Dent, 2019, 121(2): 363.e1-363.e5.
22 Pekkan G, Oezcan M, Subasi MG. Clinical factors affecting the translucency of monolithic Y-TZP ceramics[J]. Odontology, 2020, 108(4): 526-531.
23 Cho YE, Lim YJ, Han JS, et al. Effect of yttria content on the translucency and masking ability of yttria-stabilized tetragonal zirconia polycrystal[J]. Materials (Basel), 2020, 13(21): 4726.
24 Giti R, Hojati SA. Effect of varying thickness and number of coloring liquid applications on the color of anatomic contour monolithic zirconia ceramics[J]. J Dent (Shiraz), 2018, 19(4): 311-319.
25 Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia[J]. Biomaterials, 2006, 27(10): 2186-2192.
26 Motro PFK, Kursoglu P, Kazazoglu E. Effects of different surface treatments on stainability of ceramics[J]. J Prosthet Dent, 2012, 108(4): 231-237.
27 Shi AD, Wu Z, Huang JY, et al. Wear performance of self-glazed zirconia crowns with different amount of occlusal adjustment after 6 months of clinical use[J]. Adv Appl Ceram, 2018, 117(8): 445-451.
28 Vila-Nova TEL, Gurgel de Carvalho IH, Moura DMD, et al. Effect of finishing/polishing techniques and low temperature degradation on the surface topography, phase transformation and flexural strength of ultra-translucent ZrO2 ceramic[J]. Dent Mater, 2020, 36(4): E126-E139.
29 Shahmoradi M, Wan B, Zhang Z, et al. Monolithic crowns fracture analysis: the effect of material properties, cusp angle and crown thickness[J]. Dent Mater, 2020, 36(8): 1038-1051.
30 Chen YW, Moussi J, Drury JL, et al. Zirconia in biomedical applications[J]. Expert Rev Med Devices, 2016, 13(10): 945-963.
31 Tekin YH, Hayran Y. Fracture resistance and marginal fit of the zirconia crowns with varied occlusal thickness[J]. J Adv Prosthodont, 2020, 12(5): 283-290.
32 Habib SR, Asiri W, Hefne MJ. Effect of anatomic, semi-anatomic and non-anatomic occlusal surface tooth preparations on the adaptation of zirconia copings[J]. J Adv Prosthodont, 2014, 6(6): 444-450.
33 Sadid-zadeh R, Li R, Patel R, et al. Impact of occlusal intercuspal angulation on the quality of CAD/CAM lithium disilicate crowns[J]. J Prosthodont, 2020, 29(3): 219-225.
34 J?RGENSEN KD. The relationship between retention and convergence angle in cemented veneer crowns[J]. Acta Odontol Scand, 1955, 13(1): 35-40.
35 Alammari MR, Abdelnabi MH, Swelem AA. Effect of total occlusal convergence on fit and fracture resistance of zirconia-reinforced lithium silicate crowns[J]. Clin Cosmet Investig Dent, 2019, 11: 1-8.
36 Corazza PH, Feitosa SA, Borges ALS, et al. Influence of convergence angle of tooth preparation on the fracture resistance of Y-TZP-based all-ceramic restorations[J]. Dent Mater, 2013, 29(3): 339-347.
37 Nakamura K, Harada A, Inagaki R, et al. Fracture resistance of monolithic zirconia molar crowns with reduced thickness[J]. Acta Odontol Scand, 2015, 73(8): 602-608.
38 Findakly MB, Jasim HH. Influence of preparation design on fracture resistance of different monolithic zirconia crowns: a comparative study[J]. J Adv Prosthodont, 2019, 11(6): 324-330.
39 Jalalian E, Rostami R, Atashkar B. Comparison of chamfer and deep chamfer preparation designs on the fracture resistance of zirconia core restorations[J]. J Dent Res Dent Clin Dent Prospects, 2011, 5(2): 41-45.
40 Ahmed WM, Abdallah MN, Mccullagh AP, et al. Marginal discrepancies of monolithic zirconia crowns: the influence of preparation designs and sintering techniques[J]. J Prosthodont, 2019, 28(3): 288-298.
41 Ahmed WM, Shariati B, Gazzaz AZ, et al. Fit of tooth-supported zirconia single crowns—A systematic review of the literature[J]. Clin Exp Dent Res, 2020, 6(6): 700-716.
42 Euán R, Figueras-Alvarez O, Cabratosa-Termes J, et al. Comparison of the marginal adaptation of zirconium dio-xide crowns in preparations with two different finish lines[J]. J Prosthodont, 2012, 21(4): 291-295.
43 Smith CD, Twiggs SW, Fairhurst CW, et al. Determining the marginal discrepancy of cast complete crowns[J]. J Prosthet Dent, 1985, 54(6): 778-784.
44 Liang SS, Yuan FS, Luo X, et al. Digital evaluation of absolute marginal discrepancy: a comparison of ceramic crowns fabricated with conventional and digital techniques[J]. J Prosthet Dent, 2018, 120(4): 525-529.
45 Lawson NC, Jurado CA, Huang CT, et al. Effect of surface treatment and cement on fracture load of traditional zirconia (3Y), translucent zirconia (5Y), and lithium disilicate crowns[J]. J Prosthodont, 2019, 28(6): 659-665.
46 Ruales-carrera E, Cesar PF, Henriques B, et al. Adhesion behavior of conventional and high-translucent zirconia: effect of surface conditioning methods and aging using an experimental methodology[J]. J Esthet Restor Dent, 2019, 31(4): 388-397.
47 Yenisey M, Dede D?, Rona N. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics[J]. J Pros-thodont Res, 2016, 60(1): 36-46.
48 Kim HK, Ahn B. Effect of Al2O3 sandblasting particle size on the surface topography and residual compressive stresses of three different dental zirconia grades[J]. Materials (Basel), 2021, 14(3): 610.
49 Kern M. Bonding to oxide ceramics-Laboratory testing versus clinical outcome[J]. Dent Mater, 2015, 31(1): 8-14.
50 Ozcan M. Air abrasion of zirconia resin-bonded fixed dental prostheses prior to adhesive cementation: why and how[J]. J Adhes Dent, 2013, 15(4): 394.
51 Okutan Y, Kandemir B, Gundogdu Y, et al. Combined application of femtosecond laser and air-abrasion protocols to monolithic zirconia at different sintering stages: effects on surface roughness and resin bond strength[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(4): 596-605.
52 Esteves-oliveira M, Jansen P, Wehner M, et al. Surface characterization and short-term adhesion to zirconia after ultra-short pulsed laser irradiation[J]. J Adhes Dent, 2016, 18(6): 483-492.
53 Lung CY, Liu D, Matinlinna JP. Silica coating of zirconia by silicon nitride hydrolysis on adhesion promotion of resin to zirconia[J]. Mater Sci Eng C Mater Biol Appl, 2015, 46: 103-110.
54 B?micke W, Schürz A, Krisam J, et al. Durability of resin-zirconia bonds produced using methods available in dental practice[J]. J Adhes Dent, 2016, 18(1): 17-27.

Comments

PDF(729 KB)

Accesses

Citation

Detail

Sections
Recommended

/