
The chance and challenge of creating virtual patients in prosthodontics
Shen Jiefei
The chance and challenge of creating virtual patients in prosthodontics
In the field of prosthodontics, the use of virtual patients for biomimetic restoration holds great promise for various applications. Virtual patients consist of digitized data that encompasses details on the morphology, structure, and spatial relationships within the maxillofacial and intraoral regions. Nonetheless, there are several challenges associated with acquiring digital data, achieving accurate alignment, and recording and transferring dynamic jaw movements. This paper aims to concentrate on the process of constructing virtual patients, highlight the key and challenging aspects of virtual patient construction, and advocate for the extensive adoption and utilization of virtual patient technology.
prosthodontics / virtual patient / intraoral scan / facial scan / digital jaw relation transferring
R783
1 | Joda T, Br?gger U, Gallucci G. Systematic literature review of digital three-dimensional superimposition techniques to create virtual dental patients[J]. Int J Oral Maxillofac Implants, 2015, 30(2): 330-337. |
2 | Joda T, Gallucci GO. The virtual patient in dental medicine[J]. Clin Oral Implants Res, 2015, 26(6): 725-726. |
3 | Li Q, Bi M, Yang K, et al. The creation of a virtual dental patient with dynamic occlusion and its application in esthetic dentistry[J]. J Prosthet Dent, 2021, 126(1): 14-18. |
4 | Monterubbianesi R, Tosco V, Vitiello F, et al. Augmen-ted, virtual and mixed reality in dentistry: a narrative review on the existing platforms and future challenges[J]. Appl Sci, 2022, DOI:10.3390/app12020877 . |
5 | Zimmermann R, Seitz S. The impact of technological innovation on dentistry[J]. Adv Exp Med Biol, 2023, 1406: 79-102. |
6 | Pérez-Giugovaz MG, Mostafavi D, Revilla-León M. Additively manufactured scan body for transferring a vir-tual 3-dimensional representation to a digital articulator for completely edentulous patients[J]. J Prosthet Dent, 2022, 128(6): 1171-1178. |
7 | Gateno J, Xia JJ, Teichgraeber JF, et al. Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities[J]. J Oral Maxillofac Surg, 2007, 65(4): 728-734. |
8 | Ender A, Attin T, Mehl A. In vivo precision of conventional and digital methods of obtaining complete-arch dental impressions[J]. J Prosthet Dent, 2016, 115(3): 313-320. |
9 | Dupagne L, Tapie L, Lebon N, et al. Comparison of the acquisition accuracy and digitizing noise of 9 intraoral and extraoral scanners: an objective method[J]. J Prosthet Dent, 2022, 128(5): 1032-1040. |
10 | Kernen F, Schlager S, Seidel Alvarez V, et al. Accuracy of intraoral scans: an in vivo study of different scanning devices[J]. J Prosthet Dent, 2022, 128(6): 1303-1309. |
11 | Kihara H, Hatakeyama W, Komine F, et al. Accuracy and practicality of intraoral scanner in dentistry: a literature review[J]. J Prosthodont Res, 2020, 64(2): 109-113. |
12 | Kim JE, Amelya A, Shin Y, et al. Accuracy of intraoral digital impressions using an artificial landmark[J]. J Pro-sthet Dent, 2017, 117(6): 755-761. |
13 | Conejo J, Dayo AF, Syed AZ, et al. The digital clone[J]. Dent Clin North Am, 2021, 65(3): 529-553. |
14 | Wismeijer D, Joda T, Flügge T, et al. Group 5 ITI consensus report: digital technologies[J]. Clin Oral Implants Res, 2018, 29(): 436-442. |
15 | Runkel C, Güth JF, Erdelt K, et al. Digital impressions in dentistry-accuracy of impression digitalisation by desk-top scanners[J]. Clin Oral Investig, 2020, 24(3): 1249-1257. |
16 | Borbola D, Berkei G, Simon B, et al. In vitro comparison of five desktop scanners and an industrial scanner in the evaluation of an intraoral scanner accuracy[J]. J Dent, 2023, 129: 104391. |
17 | Flügge TV, Schlager S, Nelson K, et al. Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner[J]. Am J Orthod Dentofacial Orthop, 2013, 144(3): 471-478. |
18 | Mukhia N, Birur NP, Shubhasini AR, et al. Dimensional measurement accuracy of 3-dimensional models from cone beam computed tomography using different voxel sizes[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2021, 132(3): 361-369. |
19 | Sang YH, Hu HC, Lu SH, et al. Accuracy assessment of three-dimensional surface reconstructions of in vivo tee-th from cone-beam computed tomography[J]. Chin Med J (Engl), 2016, 129(12): 1464-1470. |
20 | Hilgenfeld T, Juerchott A, Deisenhofer UK, et al. In vivo accuracy of tooth surface reconstruction based on CBCT and dental MRI—A clinical pilot study[J]. Clin Oral Implants Res, 2019, 30(9): 920-927. |
21 | Karl M. In vitro studies on CAD/CAM restorations fabricated with Procera technology: an overview[J]. Quintessence Int, 2015, 46(7): 561-574. |
22 | 冯玥, 胡仲琳, 刘伟才. 三维虚拟牙科患者的建立对前牙美学修复效果的影响研究[J]. 口腔医学, 2022, 42(10): 905-910. |
22 | Feng Y, Hu ZL, Liu WC. Study on the effect of the establishment of three-dimensional virtual dental patients on aesthetic restoration outcomes of anterior teeth[J]. Stomatology, 2022, 42(10): 905-910. |
23 | Antonacci D, Caponio VCA, Troiano G, et al. Facial scanning technologies in the era of digital workflow: a systematic review and network meta-analysis[J]. J Pro-sthodont Res, 2023, 67(3): 321-336. |
24 | Michelinakis G, Apostolakis D, Velidakis E. An in vitro comparison of accuracy between three different face scanning modalities[J]. Eur J Prosthodont Restor Dent, 2023, 31(3): 296-307. |
25 | Mei J, Ma L, Chao J, et al. Three-dimensional analysis of the outcome of different scanning strategies in virtual interocclusal registration[J]. J Adv Prosthodont, 2022, 14(6): 369-378. |
26 | Ma L, Liu F, Mei J, et al. A comparative study to measure the sagittal condylar inclination using mechanical articulator, virtual articulator and jaw tracking device[J]. J Adv Prosthodont, 2023, 15(1): 11-21. |
27 | Naqash TA, Chaturvedi S, Yaqoob A, et al. Evaluation of sagittal condylar guidance angles using computerized pantographic tracings, protrusive interocclusal records, and 3D-CBCT imaging techniques for oral rehabilitation[J]. Niger J Clin Pract, 2020, 23(4): 550-554. |
28 | Revilla-León M, Kois DE, Zeitler JM, et al. An overview of the digital occlusion technologies: intraoral scanners, jaw tracking systems, and computerized occlusal analysis devices[J]. J Esthet Restor Dent, 2023, 35(5): 735-744. |
29 | Kwon JH, Im S, Chang M, et al. A digital approach to dynamic jaw tracking using a target tracking system and a structured-light three-dimensional scanner[J]. J Prosthodont Res, 2019, 63(1): 115-119. |
30 | Cimi? S, Simunkovi? SK, Badel T, et al. Measurements of the sagittal condylar inclination: intraindividual variations[J]. Cranio, 2014, 32(2): 104-109. |
31 | R?hrle O, Waddell JN, Foster KD, et al. Using a motion-capture system to record dynamic articulation for application in CAD/CAM software[J]. J Prosthodont, 2009, 18(8): 703-710. |
32 | Farook TH, Rashid F, Alam MK, et al. Variables in-fluencing the device-dependent approaches in digitally analysing jaw movement—a systematic review[J]. Clin Oral Investig, 2023, 27(2): 489-504. |
33 | Tian SK, Dai N, Li LL, et al. Three-dimensional mandi-bular motion trajectory-tracking system based on BP neural network[J]. Math Biosci Eng, 2020, 17(5): 5709-5726. |
34 | Revilla-León M, Raney L, Piedra-Cascón W, et al. Digital workflow for an esthetic rehabilitation using a facial and intraoral scanner and an additive manufactured silicone index: a dental technique[J]. J Prosthet Dent, 2020, 123(4): 564-570. |
35 | Lepidi L, Chen Z, Ravida A, et al. A full-digital technique to mount a maxillary arch scan on a virtual articulator[J]. J Prosthodont, 2019, 28(3): 335-338. |
36 | Jamjoom FZ, Yilmaz B, Johnston WM. Impact of number of registration points on the positional accuracy of a prosthetic treatment plan incorporated into a cone beam computed tomography scan by surface scan registration: an in vitro study[J]. Clin Oral Implants Res, 2019, 30(8): 826-832. |
37 | Chai J, Liu X, Schweyen R, et al. Accuracy of implant surgical guides fabricated using computer numerical control milling for edentulous jaws: a pilot clinical trial[J]. BMC Oral Health, 2020, 20(1): 288. |
38 | Solaberrieta E, Garmendia A, Minguez R, et al. Virtual facebow technique[J]. J Prosthet Dent, 2015, 114(6): 751-755. |
39 | 王振宇, 沈颉飞, 刘飞, 等. 一种新型面弓及其应用: 中国, 111772843A[P]. 2020-10-16. |
39 | Wang ZY, Shen JF, Liu F, et al. A new face bow and its application: China, 111772843A[P]. 2020-10-16. |
40 | Lam WY, Hsung RT, Choi WW, et al. A 2-part facebow for CAD-CAM dentistry[J]. J Prosthet Dent, 2016, 116(6): 843-847. |
41 | Hong SJ, Noh K. Setting the sagittal condylar inclination on a virtual articulator by using a facial and intraoral scan of the protrusive interocclusal position: a dental technique[J]. J Prosthet Dent, 2021, 125(3): 392-395. |
42 | Revilla-León M, Zandinejad A, Nair MK, et al. Accuracy of a patient 3-dimensional virtual representation obtained from the superimposition of facial and intraoral scans guided by extraoral and intraoral scan body systems[J]. J Prosthet Dent, 2022, 128(5): 984-993. |
43 | 李苏娜, 张怡, 魏青, 等. 三维冠根整合数字化模型在口腔临床中的应用研究[J]. 中国实用口腔科杂志, 2021, 14(1): 53-58. |
43 | Li SN, Zhang Y, Wei Q, et al. Application of three-dimensional reconstruction of tooth crown and root with digital models in oral clinic[J]. Chin J Pract Stomatol, 2021, 14(1): 53-58. |
44 | 刘涛, 金伟, 顾园颖, 等. 一种基于配准融合的三维牙齿模型重建方法[J]. 生物医学工程与临床, 2022, 26(5): 549-555. |
44 | Liu T, Jin W, Gu YY, et al. Three-dimensional tooth model reconstruction method based on registration and integration[J]. Biomed Eng Clin Med, 2022, 26(5): 549-555. |
45 | 邹晨, 邹道星, 艾毅龙. 口内三维扫描结合CBCT建立数字化模型的研究[J]. 口腔医学研究, 2019, 35(9): 902-905. |
45 | Zou C, Zou DX, Ai YL. Study on three dimensional digitized dental model based on intraoral scanners and cone-beam computed tomography[J]. J Oral Sci Res, 2019, 35(9): 902-905. |
46 | 国丹妮, 潘韶霞, 衡墨笛, 等. 应用于无牙颌种植修复设计的三维面部扫描配准方法的对比[J]. 北京大学学报(医学版), 2021, 53(1): 83-87. |
46 | Guo DN, Pan SX, Heng MD, et al. Comparison of the registration methods for the three-dimensional facial s-cans applied to the design of full-arch implant supported restoration[J]. J Peking Univ Heal Sci, 2021, 53(1): 83-87. |
47 | 史雨林. 骨性Ⅲ类患者正颌手术前后面部软硬组织变化的3D研究[D]. 西安: 第四军医大学, 2019. |
47 | Shi YL. 3D research of facial soft and bone tissue chan-ges of skeletal class Ⅲ patients before and after orthognathic surgery[D]. Xi’an: Fourth Military Medical University, 2019. |
48 | Conejo J, Dayo AF, Syed AZ, et al. The digital clone: intraoral scanning, face scans and cone beam computed tomography integration for diagnosis and treatment planning[J]. Dent Clin North Am, 2021, 65(3): 529-553. |
49 | Ahlers MO, Bernhardt O, Jakstat HA, et al. Motion analysis of the mandible: guidelines for standardized analysis of computer-assisted recording of condylar movements[J]. Int J Comput Dent, 2015, 18(3): 201-223. |
50 | Hobo S, Shillingburg HT, Whitsett LD. Articulator selection for restorative dentistry[J]. J Prosthet Dent, 1976, 36(1): 35-43. |
51 | Anderson GC, Schulte JK, Arnold TG. An in vitro study of an electronic pantograph[J]. J Prosthet Dent, 1987, 57(5): 577-580. |
52 | Lepidi L, Galli M, Mastrangelo F, et al. Virtual articu-lators and virtual mounting procedures: where do we stand[J]. J Prosthodont, 2021, 30(1): 24-35. |
53 | 马丽娅, 巢家瑞, 刘飞, 等. 基于下颌运动轨迹与虚拟![]() ![]() |
53 | Ma LY, Chao JR, Liu F, et al. A comparative study based on the mandibular movement track and the movement parameters of the virtual articulator in simulating occlusal adjustment[J]. West China J Stomatol, 2023, 41(3): 254-259. |
54 | Farias-Neto A, Dias AH, de Miranda BF, et al. Face-bow transfer in prosthodontics: a systematic review of the literature[J]. J Oral Rehabil, 2013, 40(9): 686-692. |
55 | Hong SJ, Choi Y, Park M, et al. Setting the sagittal condylar inclination on a virtual articulator using intraoral scan of protrusive interocclusal position and cone beam computed tomography[J]. J Prosthodont, 2020, 29(2): 185-189. |
56 | Lepidi L, Suriano C, Wang HL, et al. Digital fixed complete-arch rehabilitation: from virtual articulator mounting to clinical delivery[J]. J Prosthet Dent, 2022, 127(3): 398-403. |
57 | Levine JP, Patel A, Saadeh PB, et al. Computer-aided design and manufacturing in craniomaxillofacial surgery: the new state of the art[J]. J Craniofac Surg, 2012, 23(1): 288-293. |
58 | Azarmehr I, Stokbro K, Bell RB, et al. Surgical navigation: a systematic review of indications, treatments, and outcomes in oral and maxillofacial surgery[J]. J Oral Maxillofac Surg, 2017, 75(9): 1987-2005. |
59 | Wang Z, Chen J, Hoi SCH. Deep learning for image super-resolution: a survey[J]. IEEE Trans Pattern Anal Ma-ch Intell, 2021, 43(10): 3365-3387. |
60 | Lai WS, Huang JB, Ahuja N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks[J]. IEEE Trans Pattern Anal Mach Intell, 2019, 41(11): 2599-2613. |
61 | Heo MS, Kim JE, Hwang JJ, et al. Artificial intelligen-ce in oral and maxillofacial radiology: what is currently possible[J]. Dentomaxillofac Radiol, 2020, 50(3): 20-200375. |
/
〈 |
|
〉 |