
2025年1月7日西藏定日MS6.8地震震源破裂过程及余震分布特征
戴宗辉, 高锦瑞, 王鹏, 安艳茹, 许亮, 李冬梅, 李翠芹, 徐长朋, 土登次仁
2025年1月7日西藏定日MS6.8地震震源破裂过程及余震分布特征
为了解西藏定日M S6.8地震的破裂机制,利用远震波形反演了主震的破裂过程并采用双差定位方法对地震序列进行了精定位.研究结果显示,主震破裂过程持续约22 s,破裂面沿发震断层向北单侧扩展,破裂长度约60 km,在主震以北约30 km附近,最大滑移量2.4 m并在地表形成同震破裂带,与野外地质调查结果相吻合.余震序列呈南北分带特征,可大致划分为三个余震丛集区,其中,南部和中部丛集区的地震分布表明发震断层较为复杂,揭示了多条次级断裂的联动活动.早期余震集中分布于主破裂区外围的低滑移区,与高滑移区(>1.5 m)形成空间互补,符合“应力阴影”效应;后期余震向南迁移,并形成NE-SW与NW-SE向共轭集中区,揭示震后的多向应力调整过程.结果表明,区域构造应力场对地震破裂过程具有显著控制作用,余震分布与主震破裂后的应力调整过程和区域构造密切相关.
To investigate the rupture mechanism of the M S6.8 earthquake in Dingri, Xizang, it inverted the rupture process of the mainshock using teleseismic waveforms and refined the hypocenter locations of the aftershock sequence through the double-difference relocation method. The results indicate that the rupture process lasted approximately 22 seconds, with unilateral propagation northward along the causative fault.The rupture extended for about 60 km, and the maximum slip reached 2.4 m, located roughly 30 km north of the mainshock, forming a co-seismic surface rupture zone that is consistent with the results of field geological surveys. The aftershock sequence exhibits a characteristic north-south distribution, which can be roughly categorized into three clusters. The earthquake distribution in the southern and central clusters indicates a complex fault structure and suggests the co-seismic activation of multiple secondary faults. Early aftershocks are concentrated in the low-slip regions at the periphery of the main rupture zone, complementing the high-slip areas (>1.5 m), consistent with the “stress shadow” effect. Subsequent aftershocks migrated southward and formed conjugate clusters trending NE-SW and NW-SE, revealing a multi-directional stress adjustment process in the post-seismic stage. These findings suggest that the regional tectonic stress field plays a significant role in controlling the rupture process, and that the aftershock distribution is closely related to post-rupture stress redistribution and regional tectonics.
西藏定日地震 / 破裂过程 / 精定位 / 发震构造 / 地震 / 构造地质.
the M S6.8 earthquake in Dingri, Xizang / rupture process / precise location / seismogenic structure / earthquakes / structural geology
P65
Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/JB091iB14p13803
|
Bai, L., Chen, Z. W., Wang, S. J., 2025. The 2025 Dingri MS6.8 Earthquake in Xizang: Analysis of Tectonic Background and Discussion of Source Characteristics. Reviews of Geophysics and Planetary Physics, 56(3): 258-263 (in Chinese with English abstract).
|
Chen, K., Yang, T., Wang, Y. Z., et al., 2025. Quick Output Parameters Related to the 7 January 2025 M6.8 Earthquake in Dingri County, Xizang. Progress in Earthquake Sciences, 55(3): 164-171 (in Chinese with English abstract).
|
Chu, Y., Guo, Y. L., Liu, T. J., et al., 2024. South Tibetan Detachment System Activity and Leucogranite Emplacement: Insights from the Shisha Pangma Regions.Acta Petrologica Sinica, 40(5): 1461-1474 (in Chinese with English abstract).
|
Dreger, D. S., Gee, L., Lombard, P., et al., 2005. Rapid Finite-Source Analysis and Near-Fault Strong Ground Motions: Application to the 2003 Mw 6.5 San Simeon and 2004 Mw 6.0 Parkfield Earthquakes. Seismological Research Letters, 76(1): 40-48. https://doi.org/10.1785/gssrl.76.1.40
|
England, P., Houseman, G., 1989. Extension during Continental Convergence, with Application to the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 94(B12): 17561-17579. https://doi.org/10.1029/JB094iB12p17561
|
Felzer, K. R., Brodsky, E. E., 2005. Testing the Stress Shadow Hypothesis. Journal of Geophysical Research: Solid Earth, 110(B5): B05S09. https://doi.org/10.1029/2004JB003277
|
Fielding, E. J., 1996. Tibet Uplift and Erosion. Tectonophysics, 260(1/2/3): 55-84. https://doi.org/10.1016/0040-1951(96)00076-5
|
Gao, R., Lu, Z. W., Klemperer, S. L., et al., 2016. Crustal-Scale Duplexing beneath the Yarlung Zangbo Suture in the Western Himalaya. Nature Geoscience, 9(7): 555-560. https://doi.org/10.1038/ngeo2730
|
Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1992. Raising Tibet. Science, 255(5052): 1663-1670. https://doi.org/10.1126/science.255.5052.1663
|
Ichinose, G. A., 2000. Relative Importance of Near-, Intermediate- and Far-Field Displacement Terms in Layered Earth Synthetic Seismograms. Bulletin of the Seismological Society of America, 90(2): 531-536. https://doi.org/10.1785/0119990134
|
Ji, C., 2002. Source Description of the 1999 Hector Mine, California, Earthquake, Part I: Wavelet Domain Inversion Theory and Resolution Analysis. Bulletin of the Seismological Society of America, 92(4): 1192-1207. https://doi.org/10.1785/0120000916
|
Kusky, T. M., Meng, J. N., 2025. Perspectives on the M7.1 2025 Southern Tibetan Plateau (Xizang) Earthquake. Journal of Earth Science, 36(2): 843-846.
|
Li, N., Liu, L. Q., Zhu, L. D., et al., 2024. Quaternary Soft-Sediment Deformation Structures in the Dingmucuo Graben, Northern Himalaya. Journal of Chengdu University of Technology (Science & Technology Edition), 51(6): 1048-1056, 1069 (in Chinese with English abstract).
|
Li, S. L., Yue, H. F., Song, Z. L., 1986. Inferring the Tectonic Stress Field of Himalaya Arcuate Structure from the Multiple Focal Mechanisms. Chinese Journal of Geophysics, 29(4): 419-423 (in Chinese with English abstract).
|
Li, Y. S., Li, W. L., Xu, Q., et al., 2025. InSAR Co- Seismic Deformation Detection and Fault Slip Distribution Inversion of the M S6.8 Earthquake in Dingri, Tibet on January 7, 2025. Journal of Chengdu University of Technology (Science & Technology Edition), 1-13 (in Chinese with English abstract).
|
Liu, C., Dong, P. Y., Zhu, B. J., et al., 2018. Stress Shadow on the Southwest Portion of the Longmen Shan Fault Impacted the 2008 Wenchuan Earthquake Rupture. Journal of Geophysical Research: Solid Earth, 123(11): 9963-9981. https://doi.org/10.1029/2018JB015633
|
Liu, H. S., 1985. Geodynamical Basis for Crustal Deformation under the Tibetan Plateau. Physics of the Earth and Planetary Interiors, 40(1): 43-60. https://doi.org/10.1016/0031-9201(85)90004-4
|
Liu, M., Yang, Y. Q., 2003. Extensional Collapse of the Tibetan Plateau: Results of Three-Dimensional Finite Element Modeling. Journal of Geophysical Research: Solid Earth, 108(B8): 2361. https://doi.org/10.1029/2002JB002248
|
Mercier, J. L., Armijo, R., Tapponnier, P., et al., 1987. Change from Late Tertiary Compression to Quaternary Extension in Southern Tibet during the India-Asia Collision. Tectonics, 6(3): 275-304. https://doi.org/10.1029/TC006i003p00275
|
Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/JB083iB11p05361
|
Moratto, L., Saraò, A., Vuan, A., et al., 2017. The 2011 Mw 5.2 Lorca Earthquake as a Case Study to Investigate the Ground Motion Variability Related to the Source Model. Bulletin of Earthquake Engineering, 15(9): 3463-3482. https://doi.org/10.1007/s10518-017-0110-1
|
Shi, F., Liang, M. J., Luo, Q. X., et al., 2025. Seismogenic Fault and Coseismic Surface Deformation of the Dingri M S6.8 Earthquake in Xizang, China. Seismology and Geology, 47(1): 1-15 (in Chinese with English abstract).
|
Taylor, M., Yin, A., 2009. Active Structures of the Himalayan-Tibetan Orogen and Their Relationships to Earthquake Distribution, Contemporary Strain Field, and Cenozoic Volcanism. Geosphere, 5(3): 199-214. https://doi.org/10.1130/ges00217.1
|
Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1): 53-55 (in Chinese with English abstract).
|
Waldhauser, F., 2000. A Double-Difference Earthquake Location Algorithm: Method and Application to the Northern Hayward Fault, California. The Bulletin of the Seismological Society of America, 90(6): 1353-1368. https://doi.org/10.1785/0120000006
|
Wang, G. C., Zhang, K. X., Cao, K., et al., 2010. Expanding Processes of the Qinghai-Tibet Plateau during Cenozoic: An Insight from Spatio-Temporal Difference of Uplift. Earth Science, 35(5): 713-727 (in Chinese with English abstract).
|
Wang, H., Elliott, J. R., Craig, T. J., et al., 2014. Normal Faulting Sequence in the Pumqu-Xainza Rift Constrained by InSAR and Teleseismic Body-Wave Seismology. Geochemistry, Geophysics, Geosystems, 15(7): 2947-2963. https://doi.org/10.1002/2014GC005369
|
Wang, L. J., Wu, Z. H., Wang, W., et al., 2006. Numerical Modeling of the Present Tectonic Stress Field in the Central Qinghai-Tibet Plateau. Journal of Geomechanics, 12(2): 140-149 (in Chinese with English abstract).
|
Wang, N., Li, Y. S., Shen, W. H., et al., 2025. Source Parameters and Rapid Simulation of Strong Ground Motion of the M S6.8 Earthquake on January 7, 2025 in Dingri(Xizang, China) Derived from InSAR Observation. Geomatics and Information Science of Wuhan University, 50(2): 404-411 (in Chinese with English abstract).
|
Wu, Z. H., Hu, D. G., Wu, Z. H., et al., 2005. Slip Rates and Driving Mechanism of Active Faults in Middle Tibetan Plateau. Acta Geosicientia Sinica, 26(2): 99-104 (in Chinese with English abstract).
|
Yang, X. Y., Zhang, J. J., Qi, G. W., et al., 2009. Structure and Deformation around the Gyirong Basin, North Himalaya, and Onset of the South Tibetan Detachment System. Science in China (Series D: Earth Sciences), 52(8): 1046-1058. https://doi.org/10.1007/s11430-009-0111-2
|
Yang, Z. G., Xu, T. R., Liang, J. H., 2024. Towards Fast Focal Mechanism Inversion of Shallow Crustal Earthquakes in the Chinese Mainland. Earthquake Research Advances, 4(2): 100273. https://doi.org/10.1016/j.eqrea.2023.100273
|
Yao, J. Y., Yao, D. D., Chen, F., et al., 2025. A Preliminary Catalog of Early Aftershocks Following the 7 January 2025 M S6.8 Dingri, Xizang Earthquake. Journal of Earth Science, 1-5. https://doi.org/10.1007/s12583-025-0210-9
|
Yu, C., Li, Z. H., Hu, X. N., et al., 2025. Source Parameters and Induced Hazards of the 2025 Mw 7.1 Dingri Earthquake on the Southern Tibetan Plateau (Xizhang), China, as Revealed by Imaging Geodesy. Journal of Earth Science, 1-5. https://doi.org/10.1007/s12583-025-0175-8
|
Yue, H., Zhang, Y., Ge, Z. X., et al., 2020. Resolving Rupture Processes of Great Earthquakes: Reviews and Perspective from Fast Response to Joint Inversion. Science China Earth Sciences, 63(4): 492-511. https://doi.org/10.1007/s11430-019-9549-1.
|
Zhang, J. J., Ding, L., 2003. East-West Extension in Tibetan Plateau and Its Significance to Tectonic Evolution. Scientia Geologica Sinica,38(2): 189-198 (in Chinese with English abstract).
|
Zhang, J. W., Li, H. A., Zhang, H. P., et al., 2020. Research Progress in Cenozoic N-S Striking Rifts in Tibetan Plateau. Advances in Earth Science, 35(8): 848-862 (in Chinese with English abstract).
|
Zhang, Y., Feng, W. P., Chen, Y. T., et al., 2012. The 2009 L’Aquila MW 6.3 Earthquake: A New Technique to Locate the Hypocentre in the Joint Inversion of Earthquake Rupture Process. Geophysical Journal International, 191(3): 1417-1426. https://doi.org/10.1111/j.1365-246X.2012.05694.x.
|
Zhao, W. H., Xu, Q., Ji, F., et al., 2025. Deformation Field Characteristics and Site Effect Analysis of the M S6.8 Dingri Earthquake in Xizang on January 7, 2025. Journal of Chengdu University of Technology (Science & Technology Edition), 1-12 (in Chinese with English abstract).
|
两位评审专家对本文提出的中肯意见和建议极大提升了文章质量,本文使用的远震波形数据来自地震学联合研究院(Incorporated Research Institution for Seismology,IRIS)数据中心,震源破裂过程反演使用了北京大学张勇教授提供的Ruptel 2.1程序(Zhang et al., 2012),在文章修改过程中,中国地震台网中心杨志高博士、山东省地震局郑建常研究员提出了宝贵建议,在此一并表示感谢!
/
〈 |
|
〉 |