2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果

邵延秀, 王爱生, 刘静, 王文鑫, 韩龙飞, 邢麟杰, 许建红, 王霁川, 姚文倩, 张惠心, 刘小利

PDF(18483 KB)
PDF(18483 KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1677-1695. DOI: 10.3799/dqkx.2025.040

2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果

作者信息 +

Preliminary Investigation on Surface Rupture and Coseismic Displacement of the January 7, 2025 Dingri Earthquake in Xizang

Author information +
History +

摘要

2025年1月7日在西藏日喀则地区定日县境内发生M S6.8地震,地震发生后,我们立即对发震构造和地表破裂开展了野外调查和高精度无人机航测.基于野外地震破裂带调查和遥感数据初步解译,我们发现定日地震发震断裂为登么错(又称丁木错)断裂,并破裂了该断裂的中北段,最北到羊姆丁错姆湖的东岸,最南到朋曲河北岸,地表破裂长度约36.5 km.该地震的地表破裂基本沿着先存断裂分布;在破裂南端,多条平行断裂上出现地表陡坎,最大破裂宽度~4 km.地表破裂样式复杂多样,主要形成不同高度和宽度的地震陡坎和拉张裂缝的组合,且破裂带的北段陡坎较大,最大垂直位移(265±27)cm,陡坎高度沿走向变化较大,在两端仅为垂直位移不明显的张裂隙.本研究初步获得地表破裂长度和最大位移等参数与全球正断型地震的矩震级‒地表破裂参数经验关系的平均值较为一致.同时,定日地震的地表破裂特征也为研究单次地震陡坎与长期累积陡坎的地貌演化过程研究提供了难得的数据.

Abstract

On January 7, 2025, a M S6.8 earthquake struck Dingri County in the Shigatse region of Xizang. In response to the event, it conducted field investigations and high-precision UAV aerial surveys, which indicate that the rupture extends from the central-northern segment of the Dengme Co (or Dingmu Co) fault to the eastern shore of Yangmudingcuomu Lake and the northern bank of the Pengqu River, totaling approximately 36.5 km. The surface rupture predominantly follows existing fault structures, with the southern end exhibiting multiple parallel faults and surface scarps up to 4 km wide. The rupture patterns are complex, combining seismic scarps and extensional fissures of varying dimensions. Notably, the northern section displays larger scarps, with maximum displacements reaching approximately (265±27) cm. Scarp heights vary significantly along the rupture, with minimal vertical displacement at north and south end. Our preliminary findings suggest that the surface rupture length and maximum displacement align closely with global empirical relationships between earthquake magnitude and rupture characteristics. Additionally, the characteristics of the Dingri earthquake’s surface rupture offer valuable insights for studying the geomorphic evolution of single-event seismic scarps and their long-term cumulative effects.

关键词

地震 / 登么错断裂 / 地震地表破裂 / 同震位移 / 破裂长度 / 构造地质.

Key words

earthquakes / Dengme Co fault / seismic surface rupture / coseismic displacement / rupture length / tectonics

中图分类号

P65

引用本文

导出引用
邵延秀 , 王爱生 , 刘静 , . 2025年1月7日西藏定日地震地表破裂特征和野外同震位移测量初步结果. 地球科学. 2025, 50(05): 1677-1695 https://doi.org/10.3799/dqkx.2025.040
Shao Yanxiu, Wang Aisheng, Liu-Zeng Jing, et al. Preliminary Investigation on Surface Rupture and Coseismic Displacement of the January 7, 2025 Dingri Earthquake in Xizang[J]. Earth Science. 2025, 50(05): 1677-1695 https://doi.org/10.3799/dqkx.2025.040

参考文献

An, Z. S., Kutzbach, J. E., Prell, W. L., et al., 2001. Evolution of Asian Monsoons and Phased Uplift of the Himalaya-Tibetan Plateau since Late Miocene Times. Nature, 411(6833): 62-66. https://doi.org/10.1038/35075035
Andrews, D. J., Hanks, T. C., 1985. Scarp Degraded by Linear diffusion: Inverse Solution for Age. Journal of Geophysical Research: Solid Earth, 90(B12): 10193-10208. https://doi.org/10.1029/jb090ib12p10193
Armijo, R., Tapponnier, P., Han, T. L., 1989. Late Cenozoic Right-Lateral Strike-Slip Faulting in Southern Tibet. Journal of Geophysical Research: Solid Earth, 94(B3): 2787-2838. https://doi.org/10.1029/jb094ib03p02787
Armijo, R., Tapponnier, P., Mercier, J. L., et al., 1986. Quaternary Extension in Southern Tibet: Field Observations and Tectonic Implications. Journal of Geophysical Research: Solid Earth, 91(B14): 13803-13872. https://doi.org/10.1029/jb091ib14p13803
Arrowsmith, J. R., Pollard, D. D., Rhodes, D. D., 1996. Hillslope Development in Areas of Active Tectonics. Journal of Geophysical Research: Solid Earth, 101(B3): 6255-6275. https://doi.org/10.1029/95jb02583
Avouac, J. P., Peltzer, G., 1993. Active Tectonics in Southern Xinjiang, China: Analysis of Terrace Riser and Normal Fault Scarp Degradation along the Hotan-Qira Fault System. Journal of Geophysical Research: Solid Earth, 98(B12): 21773-21807. https://doi.org/10.1029/93jb02172
Baize, S., Blumetti, A. M., Boncio, P.,et al.,2021.A New Release of the SURE Database of Earthquake Surface Ruptures Suited to Fault Displacement Hazard Analysis. The 23rd EGU General Assembly,Vienna, EGU21-14182. https://doi.org/10.5194/egusphere-egu21-14182, 2021.
Baize, S., Nurminen, F., Sarmiento, A., et al., 2020. A Worldwide and Unified Database of Surface Ruptures (SURE) for Fault Displacement Hazard Analyses. Seismological Research Letters, 91(1): 499-520. https://doi.org/10.1785/0220190144
Bi, H. Y., Zheng, W. J., Zeng, J. Y.,et al., 2017. Application of SFM Photogrammetry Method to the Quantitative Study of Active Tectonics. Seismology and Geology, 39(4): 656-674 (in Chinese with English abstract).
Bie, L. D., González, P. J., Rietbrock, A., 2017. Slip Distribution of the 2015 Lefkada Earthquake and Its Implications for Fault Segmentation. Geophysical Journal International, 210(1): 420-427. https://doi.org/10.1093/gji/ggx171
Chen, Q. Z., Freymueller, J. T., Yang, Z. Q., et al., 2004. Spatially Variable Extension in Southern Tibet Based on GPS Measurements. Journal of Geophysical Research: Solid Earth, 109(B9): 2002JB002350. https://doi.org/10.1029/2002jb002350
Chen, W. S., 2004a.1999 Chi-Chi Earthquake: A Case Study on the Role of Thrust-Ramp Structures for Generating Earthquakes. Bulletin of the Seismological Society of America, 91(5): 986-994. https://doi.org/10.1785/0120000731
Chen, Y. G., 2004b. Surface Rupture of 1999 Chi-Chi Earthquake Yields Insights on Active Tectonics of Central Taiwan. Bulletin of the Seismological Society of America, 91(5): 977-985. https://doi.org/10.1785/0120000721
Cheng, J., Rong, Y. F., Magistrale, H., et al., 2017. An Mw-Based Historical Earthquake Catalog for Mainland China. Bulletin of the Seismological Society of America, 107(5): 2490-2500. https://doi.org/10.1785/0120170102
Crone, A. J., Haller, K. M., 1991. Segmentation and the Coseismic Behavior of Basin and Range Normal Faults: Examples from East-Central Idaho and Southwestern Montana, U.S.A. Journal of Structural Geology, 13(2): 151-164. https://doi.org/10.1016/0191-8141(91)90063-O
Crone, A.J., Machette, M.N., Bonilla, M.G., et al., 1987. Surface Faulting Accompanying the Borah Peak Earthquake and Segmentation of the Lost River Fault, Central Idaho. Bulletin of the Seismological Society of America, 77(3): 739-770.
Cubrinovski, M., Robinson, K., Taylor, M., et al., 2012. Lateral Spreading and Its Impacts in Urban Areas in the 2010-2011 Christchurch Earthquakes. New Zealand Journal of Geology and Geophysics, 55(3): 255-269. https://doi.org/10.1080/00288306.2012.699895
Du, J. J., Li, D. P., Wang, Y. F., et al., 2017. Late Quaternary Activity of the Huashan Piedmont Fault and Associated Hazards in the Southeastern Weihe Graben, Central China. Acta Geologica Sinica, 91(1): 76-92. https://doi.org/10.1111/1755-6724.13064
Ewiak, O., Victor, P., Oncken, O., 2015. Investigating Multiple Fault Rupture at the Salar Del Carmen Segment of the Atacama Fault System (Northern Chile): Fault Scarp Morphology and Knickpoint Analysis: Multiple Fault Rupture Geomorphology. Tectonics, 34(2): 187-212. https://doi.org/10.1002/2014tc003599
Feng, X., Ma, J., Zhou, Y., et al., 2020. Geomorphology and Paleoseismology of the Weinan Fault, Shaanxi, Central China, and the Source of the 1556 Huaxian Earthquake. Journal of Geophysical Research (Solid Earth), 125(12): e2019JB017848. https://doi.org/10.1029/2019JB017848
Guo, J., Zheng, J., Guan, B., et al., 2012. Coseismic Surface Rupture Structures Associated with 2010 M S7.1 Yushu Earthquake, China. Seismological Research Letters, 83(1): 109-118. https://doi.org/10.1785/gssrl.83.1.109
Haeussler, P. J., 2004. Surface Rupture and Slip Distribution of the Denali and Totschunda Faults in the 3 November 2002 M7.9 Earthquake, Alaska. Bulletin of the Seismological Society of America, 94(6B): S23-S52. https://doi.org/10.1785/0120040626
Han, L. F., Liu-Zeng, J., Yao, W. Q.,et al.,2022. Detailed Mapping of the Surface Rupture Near the Epicenter Segment of the 2021 Madoi Mw7.4 Earthquake and Discussion on Distributed Rupture in the Step-Over. Seismology and Geology, 44(2): 484-505 (in Chinese with English abstract).
Hanks, T. C., 2013. The Age of Scarplike Landforms from Diffusion-Equation Analysis. Quaternary Geochronology. American Geophysical Union, Washington, D. C., 313-338. https://doi.org/10.1029/rf004p0313
Hanks, T. C., Bucknam, R. C., Lajoie, K. R., et al., 1984. Modification of Wave-Cut and Faulting- Controlled Landforms. Journal of Geophysical Research: Solid Earth, 89(B7): 5771-5790. https://doi.org/10.1029/jb089ib07p05771
Hanks, T. C., Wallace, R. E.,1985.Morphological Analysis of the Lake Lahontan Shoreline and Beachfront Fault Scarps, Pershing County, Nevada. Bulletin of the Seismological Society of America, 75(3): 835-846. https://doi.org/10.1785/BSSA0750030835
Heron, A. M., 1922. Geological Results of the Mount Everest Expedition, 1921. The Geographical Journal, 59(6): 418. https://doi.org/10.2307/1780634
Kali, E., Leloup, P. H., Arnaud, N., et al., 2010. Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range: Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models. Tectonics, 29(2): TC2014. https://doi.org/10.1029/2009TC002551
Klinger, Y., 2010. Relation between Continental Strike-Slip Earthquake Segmentation and Thickness of the Crust. Journal of Geophysical Research: Solid Earth, 115(B7): 2009JB006550. https://doi.org/10.1029/2009jb006550
Klinger, Y., Michel, R., King, G. C. P., 2006. Evidence for an Earthquake Barrier Model from M W∼7.8 Kokoxili (Tibet) Earthquake Slip-Distribution. Earth and Planetary Science Letters, 242(3/4): 354-364. https://doi.org/10.1016/j.epsl.2005.12.003
Leloup, P. H., Mahéo, G., Arnaud, N., et al., 2010. The South Tibet Detachment Shear Zone in the Dinggye Area Time Constraints on Extrusion Models of the Himalayas. Earth and Planetary Science Letters, 292(1-2): 1-16. https://doi.org/10.1016/j.epsl.2009.12.035
Li, C. Y., Pang, J. Z., Zhang, Z. Q., 2012. Characteristics, Geometry, and Segmentation of the Surface Rupture Associated with the 14 April 2010 Yushu Earthquake, Eastern Tibet, China. Bulletin of the Seismological Society of America, 102(4): 1618-1638. https://doi.org/10.1785/0120110261
Li, H. B., Pan, J. W., Lin, A. M., et al., 2016. Coseismic Surface Ruptures Associated with the 2014 M W6.9 Yutian Earthquake on the Altyn Tagh Fault, Tibetan Plateau. Bulletin of the Seismological Society of America, 106(2): 595-608. https://doi.org/10.1785/0120150136
Li, J. J., Fang, X. M.,1998.Study on the Uplift and Environmental Change of the Tibetan Plateau. Chinese Science Bulletin, 43(15): 1569-1574 (in Chinese).
Li, J. J., Wen, S. X., Zhang, Q. S.,et al.,1979.Discussion on the Era, Amplitude and Form of the Uplift of the Tibetan Plateau. Scientia Sinica, 9(6): 608-616 (in Chinese).
Li, K., Li, Y. S., Tapponnier, P., et al., 2021. Joint InSAR and Field Constraints on Faulting during the M W6.4, July 23, 2020, Nima/Rongma Earthquake in Central Tibet. Journal of Geophysical Research: Solid Earth, 126(9): e2021JB022212. https://doi.org/10.1029/2021jb022212
Li, K., Tapponnier, P., Xu, X. W.,et al.,2023.The 2022, M S6.9 Menyuan Earthquake: Surface Rupture, Paleozoic Suture Re-Activation, Slip-Rate and Seismic Gap along the Haiyuan Fault System, NE Tibet. Earth and Planetary Science Letters, 622: 118412. https://doi.org/10.1016/j.epsl.2023.118412
Liu, J., Xu, J., Ou, Q., et al., 2023. Discussion on the Overestimated Magnitude of the 1920 Haiyuan Earthquake. Acta Seismologica Sinica, 45(4): 579-596 (in Chinese with English abstract).
Liu, R. F., Chen, Y. T., Ren, X.,et al.,2015. Magnitude Determination. Seismological Press, Beijing (in Chinese).
Liu-Zeng, J., Liu, Z. J., Liu, X. L., et al., 2024. Fault Orientation Trumps Fault Maturity in Controlling Coseismic Rupture Characteristics of the 2021 Maduo Earthquake. AGU Advances, 5(2): e2023AV001134. https://doi.org/10.1029/2023AV001134
Liu-Zeng, J., Shao, Y. X., Klinger, Y., et al., 2015. Variability in Magnitude of Paleoearthquakes Revealed by Trenching and Historical Records, along the Haiyuan Fault, China. Journal of Geophysical Research (Solid Earth), 120(12): 8304-8333. https://doi.org/10.1002/2015JB012163
Liu-Zeng, J., Sun, J., Wang, P., et al., 2012. Surface Ruptures on the Transverse Xiaoyudong Fault: A Significant Segment Boundary Breached during the 2008 Wenchuan Earthquake, China. Tectonophysics, 580: 218-241. https://doi.org/10.1016/j.tecto.2012.09.024
Liu-Zeng, J., Wen, L., Sun, J., et al., 2010. Surficial Slip and Rupture Geometry on the Beichuan Fault near Hongkou during the Mw 7.9 Wenchuan Earthquake, China. Bulletin of the Seismological Society of America, 100(5B): 2615-2650. https://doi.org/10.1785/0120090316
Liu-Zeng, J., Zhang, Z., Wen, L., et al., 2009. Co-Seismic Ruptures of the 12 May 2008, M S8.0 Wenchuan Earthquake, Sichuan: East-West Crustal Shortening on Oblique, Parallel Thrusts along the Eastern Edge of Tibet. Earth and Planetary Science Letters, 286(3/4): 355-370. https://doi.org/10.1016/j.epsl.2009.07.017
Lu, L. J., Zhou, Y., Zhang, P. Z., et al., 2022. Modelling Fault Scarp Degradation to Determine Earthquake History on the Muztagh Ata and Tahman Faults in the Chinese Pamir. Frontiers in Earth Science, 10: 838866. https://doi.org/10.3389/feart.2022.838866
Ma, J., Feng, X. J., Li, G. Y.,et al.,2016.The Coseismic Vertical Displacements of Surface Rupture Zone of the 1556 Huaxian Earthquake. Seismology and Geology, 38(1): 22-30 (in Chinese with English abstract).
McCaffrey, R., Nabelek, J., 1998. Role of Oblique Convergence in the Active Deformation of the Himalayas and Southern Tibet Plateau. Geology, 26(8): 691. https://doi.org/10.1130/0091-7613(1998)0260691:roocit>2.3.co;2
Middleton, T. A., Walker, R. T., Rood, D. H., et al., 2016. The Tectonics of the Western Ordos Plateau, Ningxia, China: Slip Rates on the Luoshan and East Helanshan Faults. Tectonics, 35(11): 2754-2777. https://doi.org/10.1002/2016TC004230
Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 31(4): 357-396. https://doi.org/10.1029/93rg02030
Molnar, P., Lyon-Caent, H., 1989. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 99(1): 123-154. https://doi.org/10.1111/j.1365-246x.1989.tb02020.x
Molnar, P., Tapponnier, P., 1975. Cenozoic Tectonics of Asia: Effects of a Continental Collision. Science, 189(4201): 419-426. https://doi.org/10.1126/science.189.4201.419
Molnar, P., Tapponnier, P., 1978. Active Tectonics of Tibet. Journal of Geophysical Research: Solid Earth, 83(B11): 5361-5375. https://doi.org/10.1029/jb083ib11p05361
Ni, J., York, J. E., 1978. Late Cenozoic Tectonics of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 83(B11): 5377-5384. https://doi.org/10.1029/jb083ib11p05377
Nurminen, F., Baize, S., Boncio, P., et al., 2022. SURE 2.0-New Release of the Worldwide Database of Surface Ruptures for Fault Displacement Hazard Analyses. Scientific Data, 9: 729. https://doi.org/10.1038/s41597-022-01835-z
Olen, S. M., Bookhagen, B., Hoffmann, B., et al., 2015. Understanding Erosion Rates in the Himalayan Orogen: A Case Study from the Arun Valley. Journal of Geophysical Research: Earth Surface, 120(10): 2080-2102. https://doi.org/10.1002/2014jf003410
Oskin, M. E., Arrowsmith, J. R., Corona, A. H.,et al.,2012.Near-Field Deformation from the El Mayor- Cucapah Earthquake Revealed by Differential LIDAR. Science, 335(6069): 702-705. https://www.science.org/doi/abs/10.1126/science.1213778
Ou, Q., Kulikova, G., Yu, J., et al., 2020. Magnitude of the 1920 Haiyuan Earthquake Reestimated Using Seismological and Geomorphological Methods. Journal of Geophysical Research: Solid Earth, 125(8): e2019JB019244. https://doi.org/10.1029/2019jb019244
Ouchi, T., Lin, A., Chen,A.,et al.,2001. The 1999 Chi-Chi (Taiwan) Earthquake: Earthquake Fault and Strong Motions. Bulletin of the Seismological Society of America, 91(5): 966-976. https://doi.org/10.1785/0120000711
Pan, J. W., Li, H. B., Chevalier, M. L.,et al.,2022.Coseismic Surface Rupture and Seismogenic Structure of the 2022 M S6.9 Menyuan Earthquake, Qinghai Province, China. Acta Geologica Sinica,96(1): 215-231 (in Chinese with English abstract).
Pasuto, A., Soldati, M., 2013. 7.25 Lateral Spreading. In: Shroder,J.F.,ed., Treatise on Geomorphology. Academic Press, San Diego, 239-248. https://doi.org/10.1016/B978-0-12-374739-6.00173-1
Pelletier, J. D., DeLong, S. B., Al-Suwaidi, A. H., et al., 2006. Evolution of the Bonneville Shoreline Scarp in West-Central Utah: Comparison of Scarp-Analysis Methods and Implications for the Diffusion Model of Hillslope Evolution. Geomorphology, 74(1-4): 257-270. https://doi.org/10.1016/j.geomorph.2005.08.008
Rockwell, T. K., Klinger, Y., 2013. Surface Rupture and Slip Distribution of the 1940 Imperial Valley Earthquake, Imperial Fault, Southern California: Implications for Rupture Segmentation and Dynamics. Bulletin of the Seismological Society of America, 103(2A): 629-640. https://doi.org/10.1785/0120120192
Rothery, D. A., Drury, S. A., 1984. The Neotectonics of the Tibetan Plateau. Tectonics, 3(1): 19-26. https://doi.org/10.1029/tc003i001p00019
Sarmiento, A., Madugo, D., Bozorgnia, Y.,et al.,2021.Fault Displacement Hazard Initiative Database. University of California, Los Angeles. https://doi.org/10.34948/N36P48
Shao, Y. X., Liu-Zeng, J., Gao, Y. P.,et al.,2022. Coseismic Displacement Measurement and Distributed Deformation Characterization: A Case of the 2021 M W7.4 Madoi Earthquake. Seismology and Geology, 44(2): 506-523 (in Chinese with English abstract).
Shi, F., Liang, M. J., Luo, Q. X., et al.,2025.Seismogenic Structure and Coseismic Surface Rupture Characteristics of the M6.8 Dingri Earthquake in Tibet on January 7, 2025. Seismology and Geology, 47(1): 1-15 (in Chinese with English abstract).
State Seismological Bureau,1988. Active Fault System around Massif. Seismological Press, Beijing (in Chinese).
Su, R. H.,Yuan, D. Y.,Xie, H.,et al.,2023.Classified Surface Rupture Characteristics and Damage Analysis of the 2022 M S6.9 Menyuan Earthquake, Qinghai. Acta Seismologica Sinica, 45(5): 797-813 (in Chinese with English abstract).
Tang, M. Y., Liu-Zeng, J., Shao, Y. X., et al., 2015. Analysis about the Minimum Magnitude Earthquake Associated with Surface Ruptures. Seismology and Geology, 37(4): 1193-1214 (in Chinese with English abstract).
Tapponnier, P., Mercier, J. L., Proust, F., et al., 1981. The Tibetan Side of the India-Eurasia Collision. Nature, 294(5840): 405-410. https://doi.org/10.1038/294405a0
Tapponnier, P., Molnar, P., 1977. Active Faulting and Tectonics in China. Journal of Geophysical Research, 82(20): 2905-2930. https://doi.org/10.1029/jb082i020p02905
Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
Taylor, M., Yin, A., Ryerson, F. J., et al., 2003. Conjugate Strike-Slip Faulting along the Bangong-Nujiang Suture Zone Accommodates Coeval East-West Extension and North-South Shortening in the Interior of the Tibetan Plateau. Tectonics, 22(4): 2002TC001361. https://doi.org/10.1029/2002tc001361
Tian, T. T., Wu, Z. H., 2023. Recent Prehistoric Major Earthquake Event of Dingmucuo Normal Fault in the Southern Segment of Shenzha-Dingjie Rift and Its Seismic Geological Significance. Geological Review, 69(S1):53-55 (in Chinese with English abstract).
Wang, H., Wright, T. J., Jing, L.Z., et al., 2019. Strain Rate Distribution in South-Central Tibet from Two Decades of InSAR and GPS. Geophysical Research Letters, 46(10): 5170-5179. https://doi.org/10.1029/2019gl081916
Wang, W. M.,2025.Preliminary Result for Rupture Process of Jan. 7, 2025, M7.1 Earthquake, Rikaze, China. National Tibetan Plateau/Third Pole Environment Data Center, Beijing.
Wei, Z. Y., Bi, L. S., Xu, Y. R., et al., 2015. Evaluating Knickpoint Recession along an Active Fault for Paleoseismological Analysis: The Huoshan Piedmont, Eastern China. Geomorphology, 235: 63-76. https://doi.org/10.1016/j.geomorph.2015.01.013
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. The Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/BSSA0840040974
Wen, X. Z., Yi, G. X., Xu, X. W., 2007. Background and Precursory Seismicities along and Surrounding the Kunlun Fault before the M S8.1, 2001, Kokoxili Earthquake, China. Journal of Asian Earth Sciences, 30(1): 63-72. https://doi.org/10.1016/j.jseaes.2006.07.008
Wesnousky, S. G.,2006.Predicting the Endpoints of Earthquake Ruptures. Nature, 444(7117): 358-360. https://www.ncbi.nlm.nih.gov/pubmed/17108963
Wesnousky, S. G., 2008. Displacement and Geometrical Characteristics of Earthquake Surface Ruptures: Issues and Implications for Seismic-Hazard Analysis and the Process of Earthquake Rupture. The Bulletin of the Seismological Society of America, 98(4): 1609-1632. https://doi.org/10.1785/0120070111
Xu, J. H., Arrowsmith, J. R., Chen, J., et al., 2021. Evaluating Young Fluvial Terrace Riser Degradation Using a Nonlinear Transport Model: Application to the Kongur Normal Fault in the Pamir, Northwest China. Earth Surface Processes and Landforms, 46(1): 280-295. https://doi.org/10.1002/esp.5022
Xu, J. H., Chen, J., Wei, Z. Y.,et al.,2023. Morphologic Dating of Scarp Morphology Based on Diffusion Equation: A Review. Seismology and Geology, 45(4): 811-832 (in Chinese with English abstract).
Xu, X. W., Tan, X. B., Yu, G. H., et al., 2013. Normal- and Oblique-Slip of the 2008 Yutian Earthquake: Evidence for Eastward Block Motion, Northern Tibetan Plateau. Tectonophysics, 584: 152-165. https://doi.org/10.1016/j.tecto.2012.08.007
Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 M W7.9 Wenchuan Earthquake, China. Geology, 37(6): 515-518. https://doi.org/10.1130/g25462a.1
Xu, X. W., Yu, G. H., Klinger, Y., et al., 2006. Reevaluation of Surface Rupture Parameters and Faulting Segmentation of the 2001 Kunlunshan Earthquake (Mw7.8), Northern Tibetan Plateau, China. Journal of Geophysical Research: Solid Earth, 111(B5): 2004JB003488. https://doi.org/10.1029/2004jb003488
Xu, X. W., Zhang, H. W., Deng, Q. D., 1988. The Paleoearthquake Traces on Huashan Front Fault Zone in Weihe Basin and Its Earthquake Intervals. Seismology and Geology, 10(4): 206 (in Chinese with English abstract).
Xu, X.Y., 2019. Late Quaternary Activity and Environmental Effects of the Kada Zheng Fault of the Shenzha-Dingjie Fault System in Southern Tibet (Dissertation). Institute of Geology, China Earthquake Administration, Beijing (in Chinese).
Xu, Y. R., He, H. L., Deng, Q. D., et al., 2018. The CE 1303 Hongdong Earthquake and the Huoshan Piedmont Fault, Shanxi Graben: Implications for Magnitude Limits of Normal Fault Earthquakes. Journal of Geophysical Research (Solid Earth), 123(4): 3098-3121.
Yan, X. B., Zhou, Y. S., Li, Z. H., et al., 2018. A Study on the Seismogenic Structure of Linfen M7(3/4) Earthquake in 1695. Seismology and Geology, 40(4): 883-902 (in Chinese with English abstract).
Yang, T., Wang, S. G., Fang, L. H., et al., 2025. Aftershock Sequence Characteristics and Seismogenic Structure of the Ms6.8 Dingri Earthquake in Tibet. Earth Science, 50(5): 1721-1732 (in Chinese with English abstract).
Yao, G. G., Jiang, Y., Yu, X. M.,1984.Investigation on the 1303 Zhaocheng Shanxi, Earthquake (M=8) and Its Parameters Concerned. Journal of Seismological Research, 7: 313-326.
Yao, W. Q., Wang, Z. J., Liu-Zeng, J.,et al.,2022. Discussion on Coseismic Surface Rupture Length of the 2021 M W7.4 Madoi Earthquake, Qinghai, China. Seismology and Geology, 44(2): 541-559 (in Chinese with English abstract).
Yeats, R. S., Sieh, K. E., Allen, C. R., 1997.The Geology of Earthquakes. Oxford University Press, New York.
Yin, A., Kapp, P. A., Murphy, M. A., et al., 1999. Significant Late Neogene East-West Extension in Northern Tibet. Geology, 27(9): 787-790. https://doi.org/10.1130/0091-7613(1999)027<0787:SLNEWE>2.3.CO;2
Yue, L. F., Suppe, J., Hung, J. H., 2005. Structural Geology of a Classic Thrust Belt Earthquake: the 1999 Chi-Chi Earthquake Taiwan (M W=7.6). Journal of Structural Geology, 27(11): 2058-2083. https://doi.org/10.1016/j.jsg.2005.05.020
Zhang, B. C, Liao, Y. H, Guo, S. M.,et al.,1986. Fault Scarps Related to the 1739 Earthquake and Seismicity of the Yinchuan Graben, Ningxia Huizu Zizhiqu, China. Bulletin of the Seismological Society of America, 76(5): 1253-1287. https://doi.org/10.1785/BSSA0760051253
Zhang, J. J.,2007.A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet. Geological Bulletin of China, 26(6): 639-649 (in Chinese with English abstract).
Zhang, J. J., Ji, J. Q., Zhong, D. L., et al., 2002.Tectonic and Chronological Evidence of the Collision of the East Himalayan Structure with India and Eurasia at the Beginning of the Paleocene in Nangabawa Region. Acta Geologica Sinica, 76(4): 445-445 (in Chinese with English abstract).
Zhang, P. Z., Shen, Z. K., Wang, M.,et al.,2004.Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 32(9): 809-812. https://doi.org/10.1130/G20554.1
Zheng, G., Wang, H., Wright, T. J., et al., 2017. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements. Journal of Geophysical Research: Solid Earth, 122(11): 9290-9312. https://doi.org/10.1002/2017jb014465

致谢

感谢中国地震局地震预测研究所胡朝忠、陈正位和西藏自治区地震局徐晶和德吉在科考过程中提供的支持和帮助,感谢中国地震局地震预测研究所房立华提供的精定位余震序列,感谢审稿专家和编辑对本文提出的建设性修改建议!

基金

国家自然科学基金项目(42272242;W2411033)
中国地震局地质研究所所长基金重点项目(JB-18-02)
地震动力学与强震预测全国重点实验室项目(LED2022A03)

评论

PDF(18483 KB)

Accesses

Citation

Detail

段落导航
相关文章

/