基于X射线CT图像的泥质致密砂岩纵横波速度计算

刘洪平, 骆杨

PDF(3168 KB)
PDF(3168 KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1999-2010. DOI: 10.3799/dqkx.2024.108

基于X射线CT图像的泥质致密砂岩纵横波速度计算

作者信息 +

P- and S-Wave Velocity Calculation Using X-Ray CT Images for Shaly Tight Sandstone

Author information +
History +

摘要

基于三维X射线CT图像重构的数字岩心模型,是目前计算岩石纵横波速度的重要方法,但由于CT图像难以准确区分致密砂岩中泥质和岩石碎屑颗粒,利用X射线CT图像研究泥质致密砂岩纵横波速度难度较大.本研究通过建立二维数字岩心模型,开展有限元模拟,讨论泥质含量、分布形式以及微孔隙的发育程度对岩石弹性参数的影响,基于影响岩石弹性参数的主控因素,探索利用三维数字岩心模拟泥质砂岩纵横波速度的可行性.研究表明:分散泥质以及骨架结构泥质对岩石体积模量影响较小,颗粒‒颗粒接触面结构泥质对体积模量影响较大,三种泥质分布形式对剪切模量影响相当;泥质含量对岩石体积模量的影响小于泥质分布形式,而泥质含量对剪切模量的影响大于泥质的分布形式;与分散泥质相关的微孔隙对岩石弹性参数影响较小,而岩石弹性参数对与骨架结构泥质和颗粒‒颗粒接触面泥质相关的微孔隙敏感,且微孔隙增加对剪切模量的减小大于体积模量.根据上述模拟结果,针对泥质砂岩建立了基于三维分水岭算法的颗粒‒颗粒接触面泥质模型,模拟结果与实测值吻合较好.

Abstract

It is an important method to simulate P- and S-wave velocities using digital core obtained from X-ray CT images. However, since it is impossible to differentiate clay and grains, and abundant micro-pores exist in shaly tight sandstones, simulating P- and S-wave velocities using digital core is a challenge. In this study, 2D digital core models are constructed and simulated using finite element method to understand the effect of clay content and distribution, amount of micro-pores on the rock elastic properties. The results will be used to assist the construction of a 3D model that can be used to simulated P- and S-wave velocities of shaly sandstones. The results show that dispersed clay and framework clay have minor effects on the bulk modulus, while interstitial clay shows large effect on bulk modulus. Effects of the different clay distributions on shear modulus are similar. Clay distribution has larger effect on bulk modulus than clay content, whereas clay content has larger effect on shear modulus than clay distribution. Micro-pores related to dispersed clay have minor effect on rock elastic properties, however micro-pores related to framework clay and grain-grain contact clay are sensitive to rock elastic properties. In addition, micro-pores have larger effect on shear modulus than bulk modulus. Based on the above results, a 3D digital core model using 3D watershed method on the X-ray images has been built and the results show good match with the measured velocities.

关键词

数字岩心 / 泥质致密砂岩 / 有限元 / 分水岭算法 / 纵横波速度 / 地球物理 / 油气地质.

Key words

digital core / shaly tight sandstone / finite element method / watershed method / P- and S-wave velocities / geophysics / petroleum geology

中图分类号

P631

引用本文

导出引用
刘洪平 , 骆杨. 基于X射线CT图像的泥质致密砂岩纵横波速度计算. 地球科学. 2025, 50(05): 1999-2010 https://doi.org/10.3799/dqkx.2024.108
Liu Hongping, Luo Yang. P- and S-Wave Velocity Calculation Using X-Ray CT Images for Shaly Tight Sandstone[J]. Earth Science. 2025, 50(05): 1999-2010 https://doi.org/10.3799/dqkx.2024.108

参考文献

Arns, C. H., Knackstedt, M. A., Pinczewski, W. V., et al., 2002. Computation of Linear Elastic Properties from Microtomographic Images: Methodology and Agreement between Theory and Experiment. Geophysics, 67(5): 1396. https://doi.org/10.1190/1.1512785
Cheng, J.W., Zhang, F., Li, X.Y., 2024. Orthorhombic Anisotropic Rock Physics Modeling for Fractured Marine Shale Reservoir in Sichuan Basin. Earth Science, 49(1): 299-312 (in Chinese with English abstract).
Dvorkin, J., Nur, A., 1996. Elasticity of High-Porosity Sandstones: Theory for Two North Sea Data Sets. Geophysics, 61(5): 1363-1370. https://doi.org/10.1190/1.1444059
Han, D. H., Nur, A., Morgan, D., 1986. Effects of Porosity and Clay Content on Wave Velocities in Sandstones. Geophysics, 51(11): 2093-2107. https://doi.org/10.1190/1.1442062
Jiang, L.M., 2012. Numerical Simulation of Acoustic and Electrical Characteristics of Natural Gas Reservoir Rocks Based on Digital Cores (Dissertation). China University of Petroleum, Dongying (in Chinese with English abstract).
Jin, G. D., Patzek, T. W., Silin, D. B., 2012. Modeling the Impact of Rock Formation History on the Evolution of Absolute Permeability. Journal of Petroleum Science and Engineering, 100: 153-161. https://doi.org/10.1016/j.petrol.2012.03.005
Li, W., Gao, L., 2013. Pavement Crack Detection Based on Improved Watershed Algorithm. Computer Engineering and Applications, 49(20): 263-266, 270 (in Chinese with English abstract).
Lin, C. L., Miller, J. D., Luttrell, G. H., 2002. Evaluation of a CT-Based Coal Washability Analysis System under Simulated On-Line Conditions. Mining, Metallurgy & Exploration, 19(1): 9-16. https://doi.org/10.1007/BF03402894
Liu, H. P., Luo, Y., Zhao, Y. C., et al., 2022. Controlling Factors and Predictions of Well-Connected Pore-Throat Volumes in Tight Oil Sandstones. Journal of Petroleum Science and Engineering, 218: 111034. https://doi.org/10.1016/j.petrol.2022.111034
Liu, H. P., Rodrigues, S., Shi, F. N., et al., 2017. Coal Washability Analysis Using X-Ray Tomographic Images for Different Lithotypes. Fuel, 209: 162-171. https://doi.org/10.1016/j.fuel.2017.07.104
Liu, X.F., 2010. Numerical Simulation of Elastic and Electrical Properties of Rock Based on Digital Cores (Dissertation). China University of Petroleum (East China), Qingdao (in Chinese with English abstract).
Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook (2nd Ed). Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9780511626753
Minear, J. W., 1982. Clay Models and Acoustic Velocities. 57th Annual Meeting, American Institute of Mining, Metallurgical and Petroleum Engineers, Dallas, https://doi.org/10.2118/11031-MS
Nur, A., Simmons, G., 1969. The Effect of Saturation on Velocity in Low Porosity Rocks. Earth and Planetary Science Letters, 7(2): 183-193. https://doi.org/10.1016/0012-821X(69)90035-1
Qiao, H.Q., Liu, C., Fang, H., et al., 2023. S-Wave Velocity Prediction Method of Volcanic Rock Based on Statistical Rock-Physics Model. Earth Science, 48(8): 2993-3006 (in Chinese with English abstract).
Sams, M. S., Andrea, M., 2001. The Effect of Clay Distribution on the Elastic Properties of Sandstones. Geophysical Prospecting, 49(1): 128-150. https://doi.org/10.1046/j.1365-2478.2001.00230.x
Saxena, N., Mavko, G., 2016. Estimating Elastic Moduli of Rocks from Thin Sections: Digital Rock Study of 3D Properties from 2D Images. Computers & Geosciences, 88: 9-21. https://doi.org/10.1016/j.cageo.2015.12.008
Sheppard, A. P., Sok, R. M., Averdunk, H., 2004. Techniques for Image Enhancement and Segmentation of Tomographic Images of Porous Materials. Physica A: Statistical Mechanics and Its Applications, 339(1/2): 145-151. https://doi.org/10.1016/j.physa.2004.03.057
Shulakova, V., Pervukhina, M., Müller, T. M., et al., 2013. Computational Elastic Up-Scaling of Sandstone on the Basis of X-Ray Micro-Tomographic Images. Geophysical Prospecting, 61(2): 287-301. https://doi.org/10.1111/j.1365-2478.2012.01082.x
Smith, T. M., Sayers, C. M., Sondergeld, C. H., 2009. Rock Properties in Low-Porosity/Low-Permeability Sandstones. The Leading Edge, 28(1): 48-59. https://doi.org/10.1190/1.3064146
Soille, P., 2003. Morphological Image Analysis-Principles and Applications. Springer, New York.
Swanson, B. F., 1985. Microporosity in Reservoir Rocks-Its Measurement and Influence on Electrical Resistivity. The Log Analyst, 26(6): 42-52.
Torskaya, T. S., 2013. Pore-Scale Analysis of Grain Shape and Sorting Effects on Fluid Transport Phenomena in Porous Media (Dissertation). The University of Texas at Austin, Austin.
Wang, K.W., 2007. Reservoir Rock Electrical Properties Study Based on Percolation Network Model and Upscaling (Dissertation). China University of Petroleum (East China), Dongying (in Chinese with English abstract).
Wyllie, M. R. J., Gregory, A. R., Gardner, G. H. F., 1958. An Experimental Investigation of Factors Affecting Elastic Wave Velocities in Porous Media. Geophysics, 23(3): 459-493. https://doi.org/10.1190/1.1438493
Xu, M. M., Yin, X. Y., Zong, Z. Y., et al., 2020. Rock-Physics Model of Volcanic Rocks, an Example from Junggar Basin of China. Journal of Petroleum Science and Engineering, 195: 107003. https://doi.org/10.1016/j.petrol.2020.107003
Xu, S. Y., White, R. E., 1995. A New Velocity Model for Clay-Sand Mixtures 1. Geophysical Prospecting, 43(1): 91-118. https://doi.org/10.1111/j.1365-2478.1995.tb00126.x
Zeng, W.C., 1991. Oil and Gas Reservoir Well Logging Evaluation Technology. Petroleum Industry Press, Beijing (in Chinese).

基金

国家自然科学基金青年基金项目(41902147;41402117)

评论

PDF(3168 KB)

Accesses

Citation

Detail

段落导航
相关文章

/