基于机器学习和迁移学习的现地地震动峰值预测

朱景宝, 刘赫奕, 栾世成, 梁坤正, 宋晋东, 李山有

PDF(5529 KB)
PDF(5529 KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 1842-1860. DOI: 10.3799/dqkx.2024.071

基于机器学习和迁移学习的现地地震动峰值预测

作者信息 +

Prediction of On-Site Peak Ground Motion Based on Machine Learning and Transfer Learning

Author information +
History +

摘要

在现地地震预警中,为了提高中国仪器地震烈度计算中地震动峰值(PGA和PGV)预测的准确性,提出了基于机器学习和迁移学习的现地地震动峰值预测方法.基于日本K-NET台网记录的强震动数据,使用神经网络建立了预训练的现地地震动峰值预测模型;基于中国的强震动数据和预训练的现地地震动峰值预测模型,通过迁移学习建立了用于中国的现地地震动峰值预测模型.对于日本和中国测试数据集以及泸定6.8级地震,在P波到达后3 s,和传统的现地地震动峰值预测方法相比,本研究提出的方法对于PGA预测和PGV预测有更小的平均绝对误差和标准差.结果表明,本研究提出的方法可以在一定程度上提高现地地震预警地震动峰值预测的可靠性,对于现地地震预警系统具有重要意义.

Abstract

To improve the accuracy of peak ground motion (peak ground acceleration (PGA) and peak ground velocity (PGV) prediction in Chinese instrument seismic intensity calculation for on-site earthquake early warning (EEW), a prediction method of on-site peak ground motion based on machine learning and transfer learning is proposed. A pretrained on-site peak ground motion prediction model was established using neural networks based on strong motion data recorded by the K-NET network in Japan. Based on strong motion data from China and the pretrained on-site peak ground motion prediction model, an on-site peak ground motion prediction model for China was established through transfer learning. For the Japanese and Chinese test dataset and Luding M6.8 eathquake, at 3 s after the arrival of P-wave, compared to traditional on-site peak ground motion prediction method, the method proposed in this study has smaller mean absolute error and standard deviation for PGA prediction and PGV prediction. The results indicate that the method proposed in this study can improve the reliability of predicting peak ground motion in on-site EEW to a certain extent, which is of great significance for the development of on-site EEW systems.

关键词

地震 / 机器学习 / 迁移学习 / P波 / 地震动峰值 / 人工智能.

Key words

earthquakes / machine learning / transfer learning / P wave / peak ground motion / artificial intelligence

中图分类号

P315

引用本文

导出引用
朱景宝 , 刘赫奕 , 栾世成 , . 基于机器学习和迁移学习的现地地震动峰值预测. 地球科学. 2025, 50(05): 1842-1860 https://doi.org/10.3799/dqkx.2024.071
Zhu Jingbao, Liu Heyi, Luan Shicheng, et al. Prediction of On-Site Peak Ground Motion Based on Machine Learning and Transfer Learning[J]. Earth Science. 2025, 50(05): 1842-1860 https://doi.org/10.3799/dqkx.2024.071

参考文献

Allen, R. M., Melgar, D., 2019. Earthquake Early Warning: Advances, Scientific Challenges, and Societal Needs. Annual Review of Earth and Planetary Sciences, 47: 361-388. https://doi.org/10.1146/annurev-earth-053018-060457
Brondi, P., Picozzi, M., Emolo, A., et al., 2015. Predicting the Macroseismic Intensity from Early Radiated P Wave Energy for On-Site Earthquake Early Warning in Italy. Journal of Geophysical Research: Solid Earth, 120(10): 7174-7189. https://doi.org/10.1002/2015jb012367
Chen, M., Wang, H., 2022. Explainable Machine Learning Model for Prediction of Ground Motion Parameters with Uncertainty Quantification. Chinese Journal of Geophysics, 65(9): 3386-3404 (in Chinese with English abstract).
Chung, J., Gulcehre, C., Cho, K., et al., 2014. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. ArXivv: 1412.3555. https://arxiv.org/abs/1412.3555v1
Fu, Z.Y., Li, D.Q., Wang, S., et al., 2023. Landslide Susceptibility Assessment Based on Multitemporal Landslide Inventories and TrAdaBoost Transfer Learning. Earth Science, 48(5): 1935-1947 (in Chinese with English abstract).
Hsu, T. Y., Huang, C. W., 2021. Onsite Early Prediction of PGA Using CNN with Multi-Scale and Multi-Domain P-Waves as Input. Frontiers in Earth Science, 9: 626908. https://doi.org/10.3389/feart.2021.626908
Hsu, T. Y., Pratomo, A., 2022. Early Peak Ground Acceleration Prediction for On-Site Earthquake Early Warning Using LSTM Neural Network. Frontiers in Earth Science, 10: 911947. https://doi.org/10.3389/feart.2022.911947
Hu, J.J., Ding, Y.T., Zhang, H., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864 (in Chinese with English abstract).
Kamigaichi, O., Saito, M., Doi, K., et al., 2009. Earthquake Early Warning in Japan: Warning the General Public and Future Prospects. Seismological Research Letters, 80(5): 717-726. https://doi.org/10.1785/gssrl.80.5.717
Kanamori, H., 2005. Real-Time Seismology and Earthquake Damage Mitigation. Annual Review of Earth and Planetary Sciences, 33: 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
Kanamori, H., 2015. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9): 2335-2341. https://doi.org/10.1007/s00024-014-0964-y
Kong, Q. K., Wang, R. J., Walter, W. R., et al., 2022. Combining Deep Learning with Physics Based Features in Explosion-Earthquake Discrimination. Geophysical Research Letters, 49(13): e2022GL098645. https://doi.org/10.1029/2022gl098645
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep Learning. Nature, 521(7553): 436-444. https://doi.org/10.1038/nature14539
Li, Z. F., 2022. A Generic Model of Global Earthquake Rupture Characteristics Revealed by Machine Learning. Geophysical Research Letters, 49(8): e2021GL096464. https://doi.org/ 10.1029/2021GL096464
Liu, C., Li, X.J., Jing, B.B., et al., 2019. The Distance Segmentation Characters of PGV-Pd Relationship Parameters for Earthquake Early Warning. Chinese Journal of Geophysics, 62(4): 1413-1426 (in Chinese with English abstract).
Lü, S., Fang, L. H., Ren, H. Y., et al., 2024. Overview of the Earthquake Monitoring Status in the United States. China Earthquake Engineering Journal, 46(2): 431-448 (in Chinese with English abstract).
Ma, Q., 2008. Study and Application on Earthquake Early Warning (Dissertation). Institute of Engineering Mechanics, China Earthquake Administration, Harbin (in Chinese with English abstract).
Ma, Q., Jin, X., Li, S.Y., et al., 2013. Automatic P-Arrival Detection for Earthquake Early Warning. Chinese Journal of Geophysics, 56(7): 2313-2321 (in Chinese with English abstract).
Mousavi, S. M., Beroza, G. C., 2020. A Machine-Learning Approach for Earthquake Magnitude Estimation. Geophysical Research Letters, 47(1): e2019GL085976.
Pan, S. J., Yang, Q., 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering, 22(10): 1345-1359. https://doi.org/10.1109/TKDE.2009.191
Peng, C. Y., Ma, Q., Jiang, P., et al., 2020. Performance of a Hybrid Demonstration Earthquake Early Warning System in the Sichuan-Yunnan Border Region. Seismological Research Letters, 91(2A): 835-846. https://doi.org/10.1785/0220190101
Serdar Kuyuk, H., Allen, R. M., Brown, H., et al., 2014. Designing a Network-Based Earthquake Early Warning Algorithm for California: ElarmS-2. Bulletin of the Seismological Society of America, 104(1): 162-173. https://doi.org/10.1785/0120130146
Song, J., Zhu, J., Li, S., 2023. MEANet: Magnitude Estimation via Physics-Based Features Time Series, an Attention Mechanism, and Neural Networks. Geophysics, 88(1): V33-V43. https://doi.org/10.1190/geo2022-0196.1
Song, J.D., Jiao, C.C., Li, S.Y., et al., 2018. Prediction Method of First-Level Earthquake Warning for High Speed Railway Based on Two-Parameter Threshold of Seismic P-Wave. China Railway Science, 39(1): 138-144 (in Chinese with English abstract).
Song, J.D., Yu, C., Li, S.Y., 2021. Continuous Prediction of Onsite PGV for Earthquake Early Warning Based on Least Squares Support Vector Machine. Chinese Journal of Geophysics, 64(2): 555-568 (in Chinese with English abstract).
State Administration for Market Regulation, Standardization Administration of China, 2020. GB/T‐17742‐2020, The Chinese Seismic Intensity Scale. China Quality and Standards Publishing & Media Co., Ltd., Beijing (in Chinese).
Wald, D. J., Quitoriano, V., Heaton, T. H., et al., 1999. Relationships between Peak Ground Acceleration, Peak Ground Velocity, and Modified Mercalli Intensity in California. Earthquake Spectra, 15(3): 557-564. https://doi.org/10.1193/1.1586058
Wang, C. Y., Huang, T. C., Wu, Y. M., 2022. Using LSTM Neural Networks for Onsite Earthquake Early Warning. Seismological Research Letters, 93(2A): 814-826. https://doi.org/10.1785/0220210197
Wang, D., Sun, K., 2022. How the Big Data Seismology and AI Refine Rapid Determination of Source Parameters of Large Earth-Quakes?. Earth Science, 47(10): 3915-3917 (in Chinese with English abstract).
Wang, J., Yang, Y., Mao, J. H., et al., 2016. CNN-RNN: A Unified Framework for Multi-Label Image Classification. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2285-2294. https://doi.org/10.1109/CVPR.2016.251
Wu, L.Y., Tong, J.B., Wang, Z.F., et al., 2023. Classification of Damaged Grade on Rural Houses after Flood Disaster Based on Deep Convolutional Neural Network and Transfer Learning. Earth Science, 48(5): 1742-1754 (in Chinese with English abstract).
Wu, Y. M., Kanamori, H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95(3): 1181-1185. https://doi.org/10.1785/0120040193
Yu, C., Song, J. D., Li, S. Y., 2021. Prediction of Ground Motion for On-Site Earthquake Early Warning Based on SVM. Journal of Vibration and Shock, 40(3): 63-72, 80 (in Chinese with English abstract).
Zhang, H., Jin, X., Wei, Y. X., et al., 2016. An Earthquake Early Warning System in Fujian, China. Bulletin of the Seismological Society of America, 106(2): 755-765. https://doi.org/10.1785/0120150143
Zhou, L. Q., Zhao, C. P., Zhang, M., et al., 2021. Machine-Learning-Based Earthquake Locations Reveal the Seismogenesis of the 2020 Mw 5.0 Qiaojia, Yunnan Earthquake. Geophysical Journal International, 228(3): 1637-1647. https://doi.org/10.1093/gji/ggab420
Zhu, J., Li, Z. F., Fang, L. H., 2023a. USTC-Pickers: A Unified Set of Seismic Phase Pickers Transfer Learned for China. Earthquake Science, 36(2): 95-112. https://doi.org/10.1016/j.eqs.2023.03.001
Zhu, J. B., Li, S. Y., Wei, Y. X., et al., 2023b. On-Site Instrumental Seismic Intensity Prediction for China via Recurrent Neural Network and Transfer Learning. Journal of Asian Earth Sciences, 248: 105610. https://doi.org/10.1016/j.jseaes.2023.105610
Zhu, J. B., Song, J. D., Li, S. Y., 2024. Influence of Low-Cost Sensors on Earthquake Early Warning Magnitude Estimation Using Convolutional Neural Network Model. Journal of Harbin Institute of Technology, 56(6): 81-90 (in Chinese with English abstract).
Zhu, J. B., Li, S. Y., Song, J. D., 2022. Hybrid Deep-Learning Network for Rapid On-Site Peak Ground Velocity Prediction. IEEE Transactions on Geoscience and Remote Sensing, 60: 5925712. https://doi.org/10.1109/TGRS.2022.3230829
Zollo, A., Amoroso, O., Lancieri, M., et al., 2010. A Threshold-Based Earthquake Early Warning Using Dense Accelerometer Networks. Geophysical Journal International, 183(2): 963-974. https://doi.org/10.1111/j.1365-246X.2010.04765.x

基金

国家自然科学基金项目(42304074)

评论

PDF(5529 KB)

Accesses

Citation

Detail

段落导航
相关文章

/