两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响

张静, 寇祝, 卿纯, 李平

PDF(1905 KB)
PDF(1905 KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 2023-2031. DOI: 10.3799/dqkx.2023.219

两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响

作者信息 +

Effects of Two Different Strains of Sulfur Oxidizing Bacteria on Arsenic Migration and Transformation in Arsenopyrite

Author information +
History +

摘要

生物硫氧化作用对热泉环境砷的迁移转化有显著影响.然而,不同类型的硫氧化微生物对砷转化的影响尚不完全清楚.本研究对比分析了硫代硫酸盐氧化型细菌Anoxybacillus flavithermus DB-1和单质硫氧化型古菌Sulfolobus tengchong RT8-4对热泉典型含硫砷矿物‒砷黄铁矿的作用.结果表明,在50 ℃、pH值为7.0~8.0的条件下,菌株A. flavithermus DB-1能在2天内将初始浓度为0.1 mmol/L的As(Ⅲ)氧化60%,但不能氧化单质硫.菌株S. tengchong RT8-4在pH值为3.0、温度为75 ℃的条件下,能在8天内将初始浓度为0.1 mmol/L的Fe(Ⅱ)氧化54.3%,但不能氧化硫离子和砷.A. flavithermus DB-1与砷黄铁矿共培养促进了砷和硫的释放,最终释放到溶液中的砷浓度为1.8 mmol/L,SO4 2-浓度为10.4 mmol/L,且无次级矿物生成.而S. tengchong RT8-4与砷黄铁矿共培养时释放出12.8 mmol/L的砷、87.7 mmol/L的SO4 2-以及8.5 mmol/L的Fe(Ⅲ),同时生成黄铁矾(Jarosite)、斜黄铁矾(Yavapaiite)、砷酸铁(Scorodite)等次级矿物.这些结果表明不同类型的硫氧化菌能促进含硫砷矿物的转化并促进砷的迁移/释放,但机理不同.本研究促进了我们对热泉中硫砷生物地球化学的认识.

Abstract

The transformation of arsenic in hot springs is significantly affected by biotic sulfur oxidization. However, the effects of different types of sulfur-oxidizing microorganisms on arsenic transformation are still not well understood. In this study, it compared the effects of anthiosulfate-oxidized bacterium Anoxybacillus flavithermus DB-1 and anelemental sulfur-oxidized archaea Sulfolobus tengchong RT8-4 on arsenopyrite, a typical sulfur-arsenic-bearing mineral from hot springs. The results show that strain A. flavithermus DB-1 could oxidize 60% of As(Ⅲ) at an initial concentration of 0.1 mmol/L in two days, but not elemental sulfur at 50 ℃, pH 7.0-8.0. Strain S. tengchong RT8-4 was able to oxidize 54.3% of Fe(Ⅱ) at an initial concentration of 0.1 mmol/L within 8 days, but could not oxidize sulfur ions and arsenic under the conditions of pH 3.0 and 75 ℃. Co-culture of A. flavithermus DB-1 with arsenopyrite promoted the release of arsenic and sulfur, and the final concentration of arsenic released into the solution was 1.8 mmol/L, SO4 2- concentration was 10.4 mmol/L, and no secondary mineral was produced. With S. tengchong RT8-4, 12.8 mmol/L of arsenic, SO4 2- 87.7 mmol/L and 8.5 mmol/L Fe(Ⅲ) were released, and the secondary minerals such as jarosite, yavapaiite and scorodite were generated. These findings suggest that different sulfur-oxidizing microorganisms can affect arsenic migration and transformation in different ways in hot springs, which improves our understanding of arsenic and sulfur biogeochemistry in hot springs.

关键词

热泉 / 硫氧化微生物 / 砷迁移转化 / 生物地质 / 地球化学.

Key words

hot spring / sulfur-oxidizing microorganisms / arsenic migration and transformation / biogeology / geochemistry

中图分类号

P66

引用本文

导出引用
张静 , 寇祝 , 卿纯 , . 两株不同硫氧化菌对砷黄铁矿中砷迁移转化的影响. 地球科学. 2025, 50(05): 2023-2031 https://doi.org/10.3799/dqkx.2023.219
Zhang Jing, Kou Zhu, Qing Chun, et al. Effects of Two Different Strains of Sulfur Oxidizing Bacteria on Arsenic Migration and Transformation in Arsenopyrite[J]. Earth Science. 2025, 50(05): 2023-2031 https://doi.org/10.3799/dqkx.2023.219

参考文献

Abbas, S. Z., Riaz, M., Ramzan, N., et al., 2015. Isolation and Characterization of Arsenic Resistant Bacteria from Wastewater. Brazilian Journal of Microbiology, 45(4): 1309-1315. https://doi.org/10.1590/s1517-83822014000400022
Amenabar, M. J., Boyd, E. S., 2018. Mechanisms of Mineral Substrate Acquisition in a Thermoacidophile. Applied and Environmental Microbiology, 84(12): e00334-18. https://doi.org/10.1128/AEM.00334-18
Baba, A., Uzelli, T., Sozbilir, H., 2021. Distribution of Geothermal Arsenic in Relation to Geothermal Play Types: A Global Review and Case Study from the Anatolian Plate (Turkey). Journal of Hazardous Materials, 414: 125510. https://doi.org/10.1016/j.jhazmat.2021.125510
Boughanemi, S., Infossi, P., Giudici-Orticoni, M. T., et al., 2020. Sulfite Oxidation by the Quinone-Reducing Molybdenum Sulfite Dehydrogenase SoeABC from the Bacterium Aquifex Aeolicus. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1861(11): 148279. https://doi.org/10.1016/j.bbabio.2020.148279
Brock, T. D., Brock, K. M., Belly, R. T., et al., 1972. Sulfolobus: A New Genus of Sulfur-Oxidizing Bacteria Living at Low pH and High Temperature. Archiv fur Mikrobiologie, 84(1): 54-68. https://doi.org/10.1007/BF00408082
Bundschuh, J., Maity, J. P., 2015. Geothermal Arsenic: Occurrence, Mobility and Environmental Implications. Renewable and Sustainable Energy Reviews, 42: 1214-1222. https://doi.org/10.1016/j.rser.2014.10.092
Castelán-Sánchez, H. G., Meza-Rodríguez, P. M., Carrillo, E., et al., 2020. The Microbial Composition in Circumneutral Thermal Springs from Chignahuapan, Puebla, Mexico Reveals the Presence of Particular Sulfur-Oxidizing Bacterial and Viral Communities. Microorganisms, 8(11): 1677. https://doi.org/10.3390/microorganisms8111677
Chen, J. S., Hussain, B., Tsai, H. C., et al., 2023. Analysis and Interpretation of Hot Springs Water, Biofilms, and Sediment Bacterial Community Profiling and Their Metabolic Potential in the Area of Taiwan Geothermal Ecosystem. Science of the Total Environment,856(1) : 159115. https://doi.org/10.1016/j.scitotenv.2022.159115
Chen, M. J., Zhang, Z. F., Hu, X. J., et al., 2022. Oxidation Mechanism of Arsenopyrite under Alkaline Conditions: Experimental and Theoretical Analyses. Journal of Cleaner Production, 358: 131987. https://doi.org/10.1016/j.jclepro.2022.131987
Dahl, C., 2015. Cytoplasmic Sulfur Trafficking in Sulfur- Oxidizing Prokaryotes. IUBMB Life, 67(4): 268-274. https://doi.org/10.1002/iub.1371
Descostes, M., Vitorge, P., Beaucaire, C., 2004. Pyrite Dissolution in Acidic Media. Geochimica et Cosmochimica Acta, 68(22): 4559-4569. https://doi.org/10.1016/j.gca.2004.04.012
Dou, L., Zhang, M. Y., Pan, L. Q., et al., 2022. Sulfide Removal Characteristics, Pathways and Potential Application of a Novel Chemolithotrophic Sulfide-Oxidizing Strain, Marinobacter sp. SDSWS8. Environmental Research, 212: 113176. https://doi.org/10.1016/j.envres.2022.113176
Edwards, K. J., Hu, B., Hamers, R. J., et al., 2001. A New Look at Microbial Leaching Patterns on Sulfide Minerals. FEMS Microbiology Ecology, 34(3): 197-206. https://doi.org/10.1016/S0168-6496(00)00094-5
Furukawa, T., Ueda, A., 2021. Tamagawa Hyper-Acidic Hot Spring and Phreatic Eruptions at Mt. Akita-Yakeyama: Part 1. The Isotopic and Chemical Characteristics of the Hot Spring Water. Journal of Volcanology and Geothermal Research, 412: 107179. https://doi.org/10.1016/j.jvolgeores.2021.107179
Guo, L., Wang, G. C., Sheng, Y. Z., et al., 2021. Hydrogeochemical Constraints Shape Hot Spring Microbial Community Compositions: Evidence from Acidic, Moderate Temperature Springs and Alkaline, High Temperature Springs, Southwestern Yunnan Geothermal Areas, China. Journal of Geophysical Research (Biogeosciences), 126(3): e2020JG005868. https://doi.org/10.1029/2020JG005868
Guo, Q. H., Planer-Friedrich, B., Liu, M. L., et al., 2017. Arsenic and Thioarsenic Species in the Hot Springs of the Rehai Magmatic Geothermal System, Tengchong Volcanic Region, China. Chemical Geology, 453: 12-20. https://doi.org/10.1016/j.chemgeo.2017.02.010
Jiang, Z., Li, P., Wang, Y. H., et al., 2014. Vertical Distribution of Bacterial Populations Associated with Arsenic Mobilization in Aquifer Sediments from the Hetao Plain, Inner Mongolia. Environmental Earth Sciences, 71(1): 311-318. https://doi.org/10.1007/s12665-013-2435-7
Kawano, M., Tomita, K., 2001. Geochemical Modeling of Bacterially Induced Mineralization of Schwertmannite and Jarosite in Sulfuric Acid Spring Water. American Mineralogist, 86(10): 1156-1165. https://doi.org/10.2138/am-2001-1005
Keller, N. S., Stefánsson, A., Sigfússon, B., 2014. Arsenic Speciation in Natural Sulfidic Geothermal Waters. Geochimica et Cosmochimica Acta, 142: 15-26. https://doi.org/10.1016/j.gca.2014.08.007
Kessler, D., 2006. Enzymatic Activation of Sulfur for Incorporation into Biomolecules in Prokaryotes. FEMS Microbiology Reviews, 30(6): 825-840. https://doi.org/10.1111/j.1574-6976.2006.00036.x
Klauber, C., 2008. A Critical Review of the Surface Chemistry of Acidic Ferric Sulphate Dissolution of Chalcopyrite with Regards to Hindered Dissolution. International Journal of Mineral Processing, 86(1-4): 1-17. https://doi.org/10.1016/j.minpro.2007.09.003
Kumarathilaka, P., Seneweera, S., Meharg, A., et al., 2018. Arsenic Speciation Dynamics in Paddy Rice Soil-Water Environment: Sources, Physico-Chemical, and Biological Factors: A Review. Water Research, 140: 403-414. https://doi.org/10.1016/j.watres.2018.04.034
Li, J. W., Peng, X. T., Zhang, L. X., et al., 2016. Linking Microbial Community Structure to S, N and Fe Biogeochemical Cycling in the Hot Springs at the Tengchong Geothermal Fields, Southwest China. Geomicrobiology Journal, 33(2): 135-150. https://doi.org/10.1080/01490451.2015.1043165
Luo, J. F., Tian, G. L., Lin, W. T., 2013. Enrichment, Isolation and Identification of Sulfur-Oxidizing Bacteria from Sulfide Removing Bioreactor. Journal of Environmental Sciences, 25(7): 1393-1399. https://doi.org/10.1016/S1001-0742(12)60179-X
Merkel, A. Y., Pimenov, N. V., Rusanov, I. I., et al., 2017. Microbial Diversity and Autotrophic Activity in Kamchatka Hot Springs. Extremophiles, 21(2): 307-317. https://doi.org/10.1007/s00792-016-0903-1
Nagar, S., Talwar, C., Motelica-Heino, M., et al., 2022. Microbial Ecology of Sulfur Biogeochemical Cycling at a Mesothermal Hot Spring Atop Northern Himalayas, India. Frontiers in Microbiology, 13: 848010. https://doi.org/10.3389/fmicb.2022.848010
Nordstrom, D. K., Ball, J. W., McCleskey, R. B., 2005. Ground Water to Surface Water: Chemistry of Thermal Outflows in Yellowstone National Park. In: Inskeep, W.P., McDermott, T.R., eds., Geothermal Biology and Geochemistry in Yellowstone National Park. Montana State University Publications, Bozeman, 73- 94.
Oremland, R. S., Stolz, J. F., 2003. The Ecology of Arsenic. Science, 300(5621): 939-944. https://doi.org/10.1126/science.1081903
Pascua, C., Sato, T., Golla, G., 2010. Mineralogical and Geochemical Constraints on Arsenic Mobility in a Philippine Geothermal Field. Acta Geologica Sinica, 80(2): 330-335. https://doi.org/10.1111/j.1755-6724.2006.tb00250.x
Qing, C., Nicol, A., Li, P., et al., 2023. Different Sulfide to Arsenic Ratios Driving Arsenic Speciation and Microbial Community Interactions in Two Alkaline Hot Springs. Environmental Research, 218: 115033. https://doi.org/10.1016/j.envres.2022.115033
Regenspurg, S., Brand, A., Peiffer, S., 2004. Formation and Stability of Schwertmannite in Acidic Mining Lakes. Geochimica et Cosmochimica Acta, 68(6): 1185-1197. https://doi.org/10.1016/j.gca.2003.07.015
Reis, V., Duarte, A. C., 2019. Occurrence, Distribution, and Significance of Arsenic Speciation. Arsenic Speciation in Algae. Elsevier, Amsterdam, 1-14. https://doi.org/10.1016/bs.coac.2019.03.006
Seo, E. Y., Cheong, Y. W., Yim, G. J., et al., 2017. Recovery of Fe, Al and Mn in Acid Coal Mine Drainage by Sequential Selective Precipitation with Control of pH. CATENA, 148: 11-16. https://doi.org/10.1016/j.catena.2016.07.022
Shi, W. J., Song, W. J., Zheng, J. L., et al., 2021. Factors and Pathways Regulating the Release and Transformation of Arsenic Mediated by Reduction Processes of Dissimilated Iron and Sulfate. Science of the Total Environment, 768: 144697. https://doi.org/10.1016/j.scitotenv.2020.144697
Tao, X. U., Liao, M. T., Yin, Z. G., 2015. A Study of Surface Mechanism of Arsenopyrite in Alkaline Solution. Acta Petrologica et Mineralogica, 34(6):821-826. https://doi.org/10.1016/j.jclepro.2022.131987
Ullrich, M. K., Pope, J. G., Seward, T. M., et al., 2013. Sulfur Redox Chemistry Governs Diurnal Antimony and Arsenic Cycles at Champagne Pool, Waiotapu, New Zealand. Journal of Volcanology and Geothermal Research, 262: 164-177. https://doi.org/10.1016/j.jvolgeores.2013.07.007
Viollier, E., Inglett, P. W., Hunter, K., et al., 2000. The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters. Applied Geochemistry, 15(6): 785-790. https://doi.org/10.1016/S0883-2927(99)00097-9
Wang, H. Y., Göttlicher, J., Byrne, J. M., et al., 2021. Vertical Redox Zones of Fe-S-As Coupled Mineralogy in the Sediments of Hetao Basin- Constraints for Groundwater as Contamination. Journal of Hazardous Materials, 408: 124924. https://doi.org/10.1016/j.jhazmat.2020.124924
Wang, R., Lin, J. Q., Liu, X. M., et al., 2019. Sulfur Oxidation in the Acidophilic Autotrophic Acidithiobacillus Spp. Frontiers in Microbiology, 9: 3290. https://doi.org/10.3389/fmicb.2018.03290
Wang, Y., Zhang, P. W., Wang, S. F., et al., 2022. Chemical Behaviors of Different Arsenic-Bearing Sulphides Bio-Oxidated by Thermophilic Bacteria. Transactions of Nonferrous Metals Society of China, 15(3): 648-652.
Wang, Y. X., Li, P., Guo, Q. H., et al., 2018. Environmental Biogeochemistry of High Arsenic Geothermal Fluids. Applied Geochemistry, 97: 81-92. https://doi.org/10.1016/j.apgeochem.2018.07.015
Wiertz, J. V., Mateo, M., Escobar, B., 2006. Mechanism of Pyrite Catalysis of As(III) Oxidation in Bioleaching Solutions at 30 ℃ and 70 ℃. Hydrometallurgy, 83(1-4): 35-39. https://doi.org/10.1016/j.hydromet.2006.03.035
Xiang, X., Dong, X., Huang, L., 2003. Sulfolobus Tengchongensis Sp. Nov., a Novel Thermoacidophilic Archaeon Isolated from a Hot Spring in Tengchong, China. Extremophiles, 7(6): 493-498. https://doi.org/10.1007/s00792-003-0355-2
Yang, H. Y., Gong, Y. P., et al., 2005. Chemical Behaviors of Different Arsenic-Bearing Sulphides Bio- Oxidated by Thermophilic Bacteria. Transactions of Nonferrous Metals Society of China, 15(3):5.
Yin, Z. P., Ye, L., Jing, C. Y., 2022. Genome-Resolved Metagenomics and Metatranscriptomics Reveal That Aquificae Dominates Arsenate Reduction in Tengchong Geothermal Springs. Environmental Science & Technology, 56(22): 16473-16482. https://doi.org/10.1021/acs.est.2c05764
Yu, Y. M., Zhu, Y. X., Williams-Jones, A. E., et al., 2004. A Kinetic Study of the Oxidation of Arsenopyrite in Acidic Solutions: Implications for the Environment. Applied Geochemistry, 19(3): 435-444. https://doi.org/10.1016/S0883-2927(03)00133-1
Zhang, D. R., Xia, J. L., Nie, Z. Y., et al., 2019. Mechanism by Which Ferric Iron Promotes the Bioleaching of Arsenopyrite by the Moderate Thermophile Sulfobacillus Thermosulfidooxidans. Process Biochemistry, 81: 11-21. https://doi.org/10.1016/j.procbio.2019.03.004
Zhang, G. J., Chao, X. W., Guo, P., et al., 2015. Catalytic Effect of Ag+ on Arsenic Bioleaching from Orpiment (As2S3) in Batch Tests with Acidithiobacillus Ferrooxidans and Sulfobacillus Sibiricus. Journal of Hazardous Materials, 283: 117-122. https://doi.org/10.1016/j.jhazmat.2014.09.022
Zhu, T., Lu, X., Liu, H., et al., 2014. Quantitative X-Ray Photoelectron Spectroscopy-Based Depth Profiling of Bioleached Arsenopyrite Surface by Acidithiobacillus ferrooxidans. Geochimica et Cosmochimica Acta, 127: 120-139. https://doi.org/10.1016/j.gca.2013.11.025

致谢

感谢中国科学研究院微生物研究所黄力研究员为本研究提供菌株!

基金

国家自然科学基金项目(41772260)

评论

PDF(1905 KB)

Accesses

Citation

Detail

段落导航
相关文章

/