云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示

夏永旗, 庹明洁, 李诺, 祁冬梅, 加纳提古丽·吾斯曼, 王慧慧, 王文波, 李婷, 邰宗尧

PDF(2731 KB)
PDF(2731 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (03) : 922-938. DOI: 10.3799/dqkx.2023.213

云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示

作者信息 +

Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun

Author information +
History +

摘要

大红柳滩二云母花岗岩被认为是白龙山等伟晶岩型锂矿的成矿母岩.为约束大红柳滩地区花岗岩‒伟晶岩的岩浆‒热液演化过程.本文选取大红柳滩岩体二云母花岗岩及不同矿化程度伟晶岩中的贯穿性矿物——云母和电气石,开展了背散射结构观察(BSE)和电子探针成分分析(EPMA).二云母花岗岩(Ms1)和白云母‒微斜长石伟晶岩(Ms2)中云母结构均一、化学成分变化小;白云母‒钠长石‒锂辉石伟晶岩(Ms3)中云母类型多样,除白云母外,还发育富锂多硅白云母、铁锂云母、锂云母,后者常交代白云母.Ms3中Li、F含量突增,其中Li2O最高可达4.68%、F可达6.47%.二云母花岗岩(Tur1)和白云母‒微斜长石伟晶岩(Tur2)中电气石为碱性黑电气石,白云母‒钠长石‒锂辉石伟晶岩中(Tur3)发育碱性锂电气石.相较于黑电气石,锂电气石具有富SiO2、Al2O3、Li2O,贫TiO2、MgO、CaO的特征.云母和电气石的成分和结构特征揭示,二云母花岗岩与白云母‒微斜长石伟晶岩形成于岩浆阶段,未发生锂矿化.白云母‒钠长石‒锂辉石伟晶岩形成于岩浆‒热液过渡期,锂元素发生了显著富集,发育锂辉石、富锂多硅白云母、铁锂云母、锂云母、锂电气石等.据此提出,岩浆‒热液转换期对于锂成矿具有重要意义.在伟晶岩型锂矿床中,锂电气石与锂云母的存在表明伟晶岩具有极高的岩浆演化程度.

Abstract

The Dahongliutan two-mica granite is considered as parental rock to the adjacent pegmatite-type lithium deposits such as Bailongshan. To constrain the magmatic-hydrothermal evolution of granite and associated pegmatites, we selected the penetrative minerals, mica and tourmaline, from two-mica granite and pegmatite with different degrees of mineralization, for backscattering observation (BSE) and electron probe microanalysis (EPMA). In the two-mica granite (Ms1) and muscovite-microcline pegmatite (Ms2), the muscovite is homogeneous, with limited chemical variations. In muscovite-albite-spodumene pegmatite, the muscovite (Ms3) incorporates much higher Li (Li2O up to 4.68%) and F (up to 6.47%) in comparison to Ms1 and Ms2. There are additional Li-bearing phengite, zinnwaldite and lepidolite that have replaced muscovite. Tourmalines from two-mica granite (Tur1) and muscovite-microcline pegmatite (Tur2) belong to alkaline schorl, while those from spodumene pegmatite (Tur3) are alkaline elbaite. Compared to alkaline schorl, alkaline elbaite is enriched in SiO2, Al2O3, Li2O, but depleted in TiO2, MgO and CaO. The textural and compositional features of mica and tourmaline reveal that the two-mica granite and muscovite-microcline pegmatite were formed by magmatic process, without lithium mineralization. By contrast, muscovite-albite-spodumene pegmatite was formed during the magmatic-hydrothermal transition, where lithium was significantly enriched, and numerous lithium-rich minerals such as spodumene, lithium-rich polysilicon muscovite, Li-bearing phengite, zinnwaldite, lepidolite and elbaite, were precipitated. Accordingly, we propose that the magmatic-hydrothermal transition is of great significance for lithium mineralization. In pegmatite-type deposits, the presence of elbaite and lepidolite indicates high degree of magmatic evolution.

关键词

稀有金属伟晶岩 / 云母 / 电气石 / 岩浆‒热液演化 / 矿物组成特征 / 矿物学 / 岩石学

Key words

rare-metal pegmatite / mica / tourmaline / magmatic-hydrothermal evolution / mineral composition characteristics / mineralogy / petrology

中图分类号

P581

引用本文

导出引用
夏永旗 , 庹明洁 , 李诺 , . 云母和电气石矿物化学特征对西昆仑大红柳滩地区伟晶岩型锂矿化的指示. 地球科学. 2024, 49(03): 922-938 https://doi.org/10.3799/dqkx.2023.213
Xia Yongqi, Tuo Mingjie, Li Nuo, et al. Mineral Characteristics of Mica and Tourmaline and Geological Implication for the Pegmatite-Type Lithium Mineralization, Dahongliutan Area, West Kunlun[J]. Earth Science. 2024, 49(03): 922-938 https://doi.org/10.3799/dqkx.2023.213

参考文献

Bershaw, J., Garzione, C. N., Schoenbohm, L., et al., 2012. Cenozoic Evolution of the Pamir Plateau Based on Stratigraphy, Zircon Provenance, and Stable Isotopes of Foreland Basin Sediments at Oytag (Wuyitake) in the Tarim Basin (West China). Journal of Asian Earth Sciences, 44: 136-148. https://doi.org/10.1016/j.jseaes.2011.04.020
Cao, R., Gao, Y. B., Chen, B., et al., 2023. Pegmatite Magmatic Evolution and Rare Metal Mineralization of the Dahongliutan Pegmatite Field, Western Kunlun Orogen: Constraints from the B Isotopic Composition and Mineral-Chemistry. International Geology Review, 65(7): 1224-1242. https://doi.org/10.1080/00206814.2021.1899062
Černý, P., Chapman, R., Teertstra, D. K., et al., 2003. Rubidium- and Cesium-Dominant Micas in Granitic Pegmatites. American Mineralogist, 88(11-12): 1832-1835. https://doi.org/10.2138/am-2003-11-1226
Černý, P., London, D., Novák, M., 2012. Granitic Pegmatites as Reflections of Their Sources. Elements, 8(4): 289-294. https://doi.org/10.2113/gselements.8.4.289
Chen, Y. J., Xue, L. Z., Wang, X. L., et al., 2021. Progress in Geological Study of Pegmatite-Type Lithium Deposits in the World. Acta Geologica Sinica, 95(10): 2971-2995 (in Chinese with English abstract).
Ding, K., Liang, T., Yang, X. Q., et al., 2019. Geochronology, Petrogenesis and Tectonic Significance of Dahongliutan Pluton in Western Kunlun Orogenic Belt, NW China. Journal of Central South University, 26(12): 3420-3435. https://doi.org/10.1007/s11771-019-4264-7
Ding, K., Liang, T., Zhou, Y., et al., 2020. Petrogenesis of Dahongliutan Biotite Monzogranite in Western Kunlun Orogen: Evidence from Zircon U-Pb Age and Li-Hf Isotope. Northwestern Geology, 53(1): 24-34 (in Chinese with English abstract).
Feng, J., Jia, H. X., Xu, S. Q., et al., 2021. Prospecting Model of Pegmatite Type Lithium Beryllium Deposit in Dahongliutan Ore Concentration Area of West Kunlun and Its Geological Implications. Xinjiang Geology, 39(3): 410-417 (in Chinese with English abstract).
Feng, Y. G., Liang, T., Wang, M. X., et al., 2022. Geochemistry of Tourmaline from Granitic Pegmatites in East Qinling and Its Implications for Mineralization. Acta Petrologica Sinica, 38(2): 428-444 (in Chinese with English abstract).
Feng, Y. G., Wang, Y. Q., Zhang, Z., et al., 2019. Geochemistry of Triphylite in Dahongliutan Lithium Pegmatites, Xinjiang: Implications for Pegmatite Evolution. Acta Geologica Sinica, 93(6): 1405-1421 (in Chinese with English abstract).
Henry, D. J., Guidotti, C. V., 1985. Tourmaline as a Petrogenetic Indicator Mineral: An Example from the Staurolite-Grade Metapelites of NW Maine. American Mineralogist, 70(1-2): 1-15. https://doi.org/10.1530/JME-15-0227
Jiang, S. Y., Wang, C. L., Zhang, L., et al., 2021. In Situ Trace Element Tracing and Isotopic Dating Ofpegmatite Type Lithium Deposits: An Overview. Acta Geologica Sinica, 95(10): 3017-3038 (in Chinese with English abstract).
Jiang, S.Y., Yu, J.M., Ni, P., et al., 2000. Tourmaline—A Sensitive Tracer for Petrogenesis and Minerogenesis. Geological Review, 46(6): 594-604 (in Chinese with English abstract).
Jolliff, B. L., Papike, J. J., Shearer, C. K., 1987. Fractionation Trends in Mica and Tourmaline as Indicators of Pegmatite Internal Evolution: Bob Ingersoll Pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 51(3): 519-534. https://doi.org/10.1016/0016-7037(87)90066-4
Kaeter, D., Barros, R., Menuge, J. F., et al., 2018. The Magmatic-Hydrothermal Transition in Rare-Element Pegmatites from Southeast Ireland: LA-ICP-MS Chemical Mapping of Muscovite and Columbite-Tantalite. Geochimica et Cosmochimica Acta, 240: 98-130. https://doi.org/10.1016/j.gca.2018.08.024
Kong, H. L., Ren, G. L., Li, W. Y., et al., 2023. Geochronology, Geochemistry and Their Geological Significances of Spodumene Pegmatite Veins in the Dahongliutandong Deposit, Western Kunlun, China. Northwestern Geology, 56(2): 61-79 (in Chinese with English abstract).
Li, J. K., Li, P., Huang, Z. B., et al., 2023. Geological Features and Formation Mechanism of Pegmatite-Type Rare-Metal Deposits in the Renli Orefield, Northern Hunan, China—An Overview. Earth Science Frontiers, 30(5): 1-25 (in Chinese with English abstract).
Li, K., Gao, Y. B., Teng, J. X., et al., 2019. Metallogenic Geological Characteristics, Mineralization Age and Resource Potential of the Granite-Pegmatite-Type Rare Metal Deposits in Dahongliutan Area, Hetian County, Xinjiang. Northwestern Geology, 52(4): 206-221 (in Chinese with English abstract).
Li, L. G., Wang, L. X., Zhu, Y. X., et al., 2023. Metallogenic Age and Process of Rare Metal-Bearing Pegmatites from the Northern Margin of Mufushan Complex, South China. Earth Science, 48(9): 3221-3244 (in Chinese with English abstract).
Li, W. Y., Zhang, Z. W., Gao, Y. B., et al., 2022. Tectonic Transformation of the Kunlun Paleo-Tethyan Orogenic Belt and Related Mineralization of Critical Mineral Resources of Nickel, Cobalt, Manganese and Lithium. Geology in China, 49(5): 1385-1407 (in Chinese with English abstract).
Linnen, R. L., 1998. The Solubility of Nb-Ta-Zr-Hf-W in Granitic Melts with Li and Li + F; Constraints for Mineralization in Rare Metal Granites and Pegmatites. Economic Geology, 93(7): 1013-1025. https://doi.org/10.2113/gsecongeo.93.7.1013
Linnen, R. L., Van Lichtervelde, M., Cerny, P., 2012. Granitic Pegmatites as Sources of Strategic Metals. Elements, 8(4): 275-280. https://doi.org/10.2113/gselements.8.4.275
Liu, C., Wang, R. C., Wu, F. Y., et al., 2021. Lithium Mineralization in Qomolangma: First Report of Elbaite-Lepidolite Subtype Pegmatite in the Himalaya Leucogranite Belt. Acta Petrologica Sinica, 37(11): 3287-3294 (in Chinese with English abstract).
London, D., Manning, D. A. C., 1995. Chemical Variation and Significance of Tourmaline from Southwest England. Economic Geology, 90(3): 495-519. https://doi.org/10.2113/gsecongeo.90.3.495
Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract).
Mattern, F., Schneider, W., 2000. Suturing of the Proto- and Paleo-Tethys Oceans in the Western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences, 18(6): 637-650. https://doi.org/10.1016/S1367-9120(00)00011-0
Peng, H. L., He, N. Q., Wang, M. C., et al., 2018. Geological Characteristics and Metallogenic Regularity of West Track 509 Rare Polymetallic Deposit in Dahongliutan Region, Hetian, Xinjiang. Northwestern Geology, 51(3): 146-154 (in Chinese with English abstract).
Qiao, G. B., Zhang, H. D., Wu, Y. Z., et al., 2015. Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun: Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics. Acta Geologica Sinica, 89(7): 1180-1194 (in Chinese with English abstract).
Roda-Robles, E., Pesquera, A., Gil-Crespo, P. P., et al., 2006. Mineralogy and Geochemistry of Micas from the Pinilla de Fermoselle Pegmatite (Zamora, Spain). European Journal of Mineralogy, 18(3): 369-377. https://doi.org/10.1127/0935-1221/2006/0018-0369
Selway, J. B., 2005. A Review of Rare-Element (Li-Cs-Ta) Pegmatite Exploration Techniques for the Superior Province, Canada, and Large Worldwide Tantalum Deposits. Exploration and Mining Geology, 14(1-4): 1-30. https://doi.org/10.2113/gsemg.14.1-4.1
Tang, J. L., Ke, Q., Xu, X. W., et al., 2022. Magma Evolution and Mineralization of Longmenshan Lithium- Beryllium Pegmatite in Dahongliutan Area, West Kunlun. Acta Petrologica Sinica, 38(3): 655-675 (in Chinese with English abstract).
Teng, J. X., Gao, Y. B., He, Y. K., et al., 2021. Metallogenic Regularity and Resource Potential of Manganese, Lithium, Lead, Zinc and Iron in West Kunlun. Geological Publishing House, Beijing (in Chinese).
Thomas, R., Davidson, P., Beurlen, H., 2012. The Competing Models for the Origin and Internal Evolution of Granitic Pegmatites in the Light of Melt and Fluid Inclusion Research. Mineralogy and Petrology, 106(1): 55-73. https://doi.org/10.1007/s00710-012-0212-z
Thomas, R., Webster, J. D., Heinrich, W., 2000. Melt Inclusions in Pegmatite Quartz: Complete Miscibility between Silicate Melts and Hydrous Fluids at Low Pressure. Contributions to Mineralogy and Petrology, 139(4): 394-401. https://doi.org/10.1007/s004100000120
Tischendorf, G., Gottesmann, B., Förster, H. J., et al., 1997. On Li-Bearing Micas: Estimating Li from Electron Microprobe Analyses and an Improved Diagram for Graphical Representation. Mineralogical Magazine, 61(409): 809-834. https://doi.org/10.1180/minmag.1997.061.409.05
Trumbull, R. B., Beurlen, H., Wiedenbeck, M., et al., 2013. The Diversity of B-Isotope Variations in Tourmaline from Rare-Element Pegmatites in the Borborema Province of Brazil. Chemical Geology, 352: 47-62. https://doi.org/10.1016/j.chemgeo.2013.05.021
Tu, Q. J., Han, Q., Li, P., et al., 2019. Basic Characteristics and Exploration Progress of the Spodumene Ore Deposit in the Dahongliutan Area, West Kunlun. Acta Geologica Sinica, 93(11): 2862-2873 (in Chinese with English abstract).
van Hinsberg, V. J., Henry, D. J., Dutrow, B. L., 2011. Tourmaline as a Petrologic Forensic Mineral: A Unique Recorder of Its Geologic Past. Elements, 7(5): 327-332. https://doi.org/10.2113/gselements.7.5.327
Van Lichtervelde, M., Holtz, F., Hanchar, J. M., 2010. Solubility of Manganotantalite, Zircon and Hafnon in Highly Fluxed Peralkaline to Peraluminous Pegmatitic Melts. Contributions to Mineralogy and Petrology, 160(1): 17-32. https://doi.org/10.1007/s00410-009-0462-x
Veksler, I. V., 2004. Liquid Immiscibility and Its Role at the Magmatic-Hydrothermal Transition: A Summary of Experimental Studies. Chemical Geology, 210(1-4): 7-31. https://doi.org/10.1016/j.chemgeo.2004.06.002
Veksler, I. V., Thomas, R., Schmidt, C., 2002. Experimental Evidence of Three Coexisting Immiscible Fluids in Synthetic Granitic Pegmatite. American Mineralogist, 87(5-6): 775-779. https://doi.org/10.2138/am-2002-5-621
Wang, H., Gao, H., Ma, H. D., et al., 2020. Geological Characteristics and Pegmatite Vein Group Zoning of the Xuefengling, Xuepen, and Shuangya Lithium Deposits in Karakorum, Hetian, Xinjiang. Geotectonica et Metallogenia, 44(1): 57-68 (in Chinese with English abstract).
Wang, H., Li, P., Ma, H. D., et al., 2017. Discovery of the Bailongshan Superlarge Lithium-Rubidium Deposit in Karakorum, Hetian, Xinjiang, and Its Prospecting Implication. Geotectonica et Metallogenia, 41(6): 1053-1062 (in Chinese with English abstract).
Wang, R. C., Xie, L., Zhu, Z. Y., et al., 2019. Micas: Important Indicators of Granite-Pegmatite-Related Rare-Metal Mineralization. Acta Petrologica Sinica, 35(1): 69-75 (in Chinese with English abstract).
Wang, W., Du, X. F., Liu, W., et al., 2022. Geological Characteristic and Discussion on Metallogenic Age of the West 509-Daoban Li-Be Rare Metal Deposit in the West Kunlun Orogenic Belt. Acta Petrologica Sinica, 38(7): 1967-1980 (in Chinese with English abstract).
Wang, Z., Chen, Z. Y., Li, J. K., et al., 2019. Indication of Mica Minerals for Magmatic-Hydrothermal Evolution of Renli Rare Metal Pegmatite Deposit. Mineral Deposits, 38(5): 1039-1052 (in Chinese with English abstract).
Wang, H., Gao, H., Zhang, X. Y., et al., 2020. Geology and Geochronology of the Super-Large Bailongshan Li-Rb-(Be) Rare-Metal Pegmatite Deposit, West Kunlun Orogenic Belt, NW China. Lithos, 360-361: 105449. https://doi.org/10.1016/j.lithos.2020.105449
Wei, X. P., Wang, H., Hu, J., et al., 2017. Geochemistry and Geochronology of the Dahongliutan Two-Mica Granite Pluton in Western Kunlun Orogen: Geotectonic Implications. Geochimica, 46(1): 66-80 (in Chinese with English abstract).
Xiao, W. J., Han, F. L., Windley, B. F., et al., 2003. Multiple Accretionary Orogenesis and Episodic Growth of Continents: Insights from the Western Kunlun Range, Central Asia. International Geology Review, 45(4): 303-328. https://doi.org/10.2747/0020-6814.45.4.303
Xiao, W. J., Windley, B. F., Fang, A. M., et al., 2001. Palaeozoic-Early Mesozoic Accretionary Tectonics of the Western Kunlun Range, NW China. Gondwana Research, 4(4): 826-827. https://doi.org/10.1016/S1342-937X(05)70611-0
Xiao, W. J., Windley, B. F., Liu, D., et al., 2005. Accretionary Tectonics of the Western Kunlun Orogen, China: A Paleozoic-Early Mesozoic, Long-Lived Active Continental Margin with Implications for the Growth of Southern Eurasia. The Journal of Geology, 113(6): 687-705. https://doi.org/10.1086/449326
Xing, C. M., Wang, C. Y., Wang, H., 2020. Magmatic-Hydrothermal Processes Recorded by Muscovite and Columbite-Group Minerals from the Bailongshan Rare-Element Pegmatites in the West Kunlun-Karakorum Orogenic Belt, NW China. Lithos, 364-365: 105507. https://doi.org/10.1016/j.lithos.2020.105507
Xu, Z. Q., Zhu, W. B., Zheng, B. H., et al., 2021. New Energy Strategy for Lithium Resource and the Continental Dynamics Research—Celebrating the Centenary of the School of Earth Sciences and Engineering, Nanjing University. Acta Geologica Sinica, 95(10): 2937-2954 (in Chinese with English abstract).
Yan, Q. H., Wang, H., Qiu, Z. W., et al., 2017. Chronology and Geological Significance of Cassiterite and Niobium-Tantalum Ore Deposits in Dahongliutan Rare Metal in West Kunlun. The 9th National Member Congress and 16th Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry, Xi’an (in Chinese with English abstract).
Yan, Q. H., Qiu, Z. W., Wang, H., et al., 2018. Age of the Dahongliutan Rare Metal Pegmatite Deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb Dating of Columbite-(Fe) and Cassiterite. Ore Geology Reviews, 100: 561-573. https://doi.org/10.1016/j.oregeorev.2016.11.010
Yan, Q. H., Wang, H., Chi, G. X., et al., 2022. Recognition of a 600-km-Long Late Triassic Rare Metal (Li-Rb-Be-Nb-Ta) Pegmatite Belt in the Western Kunlun Orogenic Belt, Western China. Economic Geology, 117(1): 213-236. https://doi.org/10.5382/econgeo.4858
Yang, S. Y., Jiang, S. Y., 2012. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic-Intrusive Complex, Southeast China: Evidence for Boron Mobilization and Infiltration during Magmatic-Hydrothermal Processes. Chemical Geology, 312-313: 177-189. https://doi.org/10.1016/j.chemgeo.2012.04.026
Zhang, C. L., Lu, S. N., Yu, H. F., et al., 2007. Tectonic Evolution of the West Kunlun Orogenic Belt on the Northern Margin of Qinghai-Tibet Plateau: Evidence from Zircon SHRIMP and LA-ICP-MS Dating. Science in China (Series D), 37(2): 145-154 (in Chinese).
Zhang, C.L., Ma, H.D., Zhu, B.Y., et al., 2019. Tectonic Evolution of the Western Kunlun-Karakorum Orogenic Belt and Its Coupling with the Mineralization Effect. Geological Review, 65(5): 1077-1102 (in Chinese with English abstract).
Zhang, H., Wang, R. C., Tang, Y., 2008. How Long Does the Magma-Hydrothermal Transition Stage Last. Bulletin of Mineralogy Petrology and Geochemistry, 27 (Suppl.): 22-23 (in Chinese with English abstract).
Zhang, A. C., Wang, R. C., Jiang, S. Y., et al., 2008. Chemical and Textural Features of Tourmaline from the Spodumene-Subtype Koktokay No. 3 Pegmatite, Altai, Northwestern China: A Record of Magmatic to Hydrothermal Evolution. The Canadian Mineralogist, 46(1): 41-58. https://doi.org/10.3749/canmin.46.1.41
Zhang, H. J., Tian, S. H., Wang, D. H., et al., 2021a. Lithium Isotope Behavior during Magmatic Differentiation and Fluid Exsolution in the Jiajika Granite-Pegmatite Deposit, Sichuan, China. Ore Geology Reviews, 134: 104139. https://doi.org/10.1016/j.oregeorev.2021.104139
Zhang, L., Long, X. P., Zhang, R., et al., 2017. Source Characteristics and Provenance of Metasedimentary Rocks from the Kangxiwa Group in the Western Kunlun Orogenic Belt, NW China: Implications for Tectonic Setting and Crustal Growth. Gondwana Research, 46: 43-56. https://doi.org/10.1016/j.gr.2017.02.014
Zhang, Z. Y., Jiang, Y. H., Niu, H. C., et al., 2021b. Fluid Inclusion and Stable Isotope Constraints on the Source and Evolution of Ore-Forming Fluids in the Bailongshan Pegmatitic Li-Rb Deposit, Xinjiang, Western China. Lithos, 380-381: 105824. https://doi.org/10.1016/j.lithos.2020.105824
Zhao, J. Z., Cao, Z. J., Zhang, Z. J., et al., 2019. Analysis of the Genesis of Tourmaline and Lithium Beryllium Ore. Xinjiang Nonferrous Metals, 42(6): 57-60 (in Chinese with English abstract).
Zhou, B., Sun, Y. X., Kong, D. Y., 2011. Geological Features and Prospecting Potential of Rare Metallic Deposits in the Dahongliutan Region, Xinjiang. Acta Geologica Sichuan, 31(3): 288-292 (in Chinese with English abstract).
Zhou, J. S., Wang, Q., Xu, Y. G., et al., 2021. Geochronology, Petrology, and Lithium Isotope Geochemistry of the Bailongshan Granite-Pegmatite System, Northern Tibet: Implications for the Ore-Forming Potential of Pegmatites. Chemical Geology, 584: 120484. https://doi.org/10.1016/j.chemgeo.2021.120484
Zou, T. R., Li, Q. C., 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Geological Publishing House, Beijing (in Chinese with English abstract).
Zou, T. R., Yang, Y. Q., 1996. Color and Composition of Tourmaline in China. Mineral Deposits. 15(S1): 65-68 (in Chinese with English abstract).

致谢

感谢审稿人及编辑部提出的宝贵意见和建议.野外工作得到新疆昆仑蓝钻锂业有限责任公司、新疆有色地勘局的大力支持.文章撰写过程中得到了长安大学岑炬标和中国地质科学院矿产资源研究所王臻博士的帮助,匿名审稿专家也提供了诸多有益建议,在此一并表示感谢!

基金

国家自然科学基金项目(42122014)
新疆维吾尔自治区重大科技专项(2021A03001-2)
新疆维吾尔自治区重点实验室开放课题(2023D04067)
第三次新疆科学考察项目(2022xjkk1301)

评论

PDF(2731 KB)

Accesses

Citation

Detail

段落导航
相关文章

/