融合处理速度和加速度记录的地震检测模型及其在新丰江水库的应用

蒋策, 吕作勇, 房立华

PDF(2511 KB)
PDF(2511 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 469-479. DOI: 10.3799/dqkx.2023.186

融合处理速度和加速度记录的地震检测模型及其在新丰江水库的应用

作者信息 +

Earthquake Detection Model Trained on Velocity and Acceleration Records and Its Application in Xinfengjiang Reservoir

Author information +
History +

摘要

随着国家地震烈度速报与预警工程的建设,加速度记录在地震科学中将得到越来越多的应用. 但目前的地震检测模型多使用速度记录训练,对加速度记录的检测效果较差.利用广东地震台网数据,训练得到了可检测速度记录的PhaseNet_GD模型和检测加速度记录的PhaseNet_ITS模型. 在此基础上,结合GaMMA震相关联和HYPOSAT地震定位方法,发展了一套新的地震数据智能处理流程,并处理了2023年新丰江水库M L4.8地震序列,检测出的事件数量是人工目录的3.8倍,匹配率为93.2%,误检测率为0.38%.这一系统可快速产出完备性高、高精度的地震目录,为水库地震监测和区域地震台网的数据实时处理提供技术支撑.

Abstract

With the construction of the "National Seismic Intensity Rapid Reporting and Early Warning" project, acceleration records data will be increasingly applied in earthquake science research. However, most current earthquake detection models use velocity records for training, which results in poor detection performance for acceleration records. This study utilized seismic records from the Guangdong Earthquake Network to train the PhaseNet_GD model for detecting velocity records and the PhaseNet_ITS model for detecting acceleration records.Based on this, a new intelligent earthquake data processing system was developed by combining the GaMMA, phase association method, and the HYPOSAT, earthquake location method. This system was used to process the 2023 M L 4.8 earthquake sequence in XinfengjiangReservoir, Heyuan, and detected events 3.8 times more than the manual catalog, with a matching rate of 93.2% and a false detection rate of 0.38%. This system can provide technical support for reservoir seismic monitoring and real-time data processing of regional earthquake networks.

关键词

区域台网 / 深度学习 / 地震检测 / PhaseNet / 新丰江水库 / 水库地震

Key words

regional seismic network / deep learning / seismic detection / PhaseNet / Xinfengjiang Reservoir / reservoir induced earthquake

中图分类号

P315.61

引用本文

导出引用
蒋策 , 吕作勇 , 房立华. 融合处理速度和加速度记录的地震检测模型及其在新丰江水库的应用. 地球科学. 2024, 49(02): 469-479 https://doi.org/10.3799/dqkx.2023.186
Jiang Ce, Lü Zuoyong, Fang Lihua. Earthquake Detection Model Trained on Velocity and Acceleration Records and Its Application in Xinfengjiang Reservoir[J]. Earth Science. 2024, 49(02): 469-479 https://doi.org/10.3799/dqkx.2023.186

参考文献

Allen, R. V., 1978. Automatic Earthquake Recognition and Timing from Single Traces. Bulletin of the Seismological Society of America, 68(5): 1521-1532. https://doi.org/10.1785/bssa0680051521
Ester, M., Kriegel, H.P., Sander, J., et al., 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise, Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. AAAI Press, Portland, Oregon, 226-231.
Fan, Y., Lin, J., Hu, R., et al., 1990. The Development of Traveltimetable for near Earthquake in South China. South China Seismological Journal, 10(2) : 1-16(in Chinese).
Hu, J., Ding, Y., Zhang, H., Jin, C., et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864 (in Chinese with English abstract).
Jiang, C., Fang, L. H., Fan, L. P., et al., 2021. Comparison of the Earthquake Detection Abilities of PhaseNet and EQTransformer with the Yangbi and Maduo Earthquakes. Earthquake Science, 34(5): 425-435. https://doi.org/10.29382/eqs-2021-0038
Kato, A., Obara, K., Igarashi, T., et al., 2012. Propagation of Slow Slip Leading up to the 2011 Mw9.0 Tohoku-Oki Earthquake. Science, 335(6069): 705-708. https://doi.org/10.1126/science.1215141
Lapins, S., Goitom, B., Kendall, J. M., et al., 2021. A Little Data Goes a Long Way: Automating Seismic Phase Arrival Picking at Nabro Volcano with Transfer Learning. Journal of Geophysical Research: Solid Earth, 126(7). https://doi.org/10.1029/2021jb021910
Li, B. R., Fan, L. P., Jiang, C., et al., 2023. CSESnet: A Deep Learning P-Wave Detection Model Based on UNet++ Designed for China Seismic Experimental Site. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.1032839
Liao, S., Zhang, H., Fan, L., et al., 2021. Development of a Real-Time Intelligent Seismic Processing System and Its Application in the 2021 Yunnan Yangbi M S6.4 Earthquake. Chinese J. Geophys, 64(10): 3632-3645 (in Chinese with English abstract).
Meng, X., Yang, H., Peng, Z., et al., 2018. Foreshocks, b Value Map, and Aftershock Triggering for the 2011 Mw 5.7 Virginia Earthquake. Journal of Geophysical Research: Solid Earth, 123(6): 5082-5098. https://doi.org/10.1029/2017jb015136
Mousavi, S. M., Ellsworth, W. L., Zhu, W. Q., et al., 2020. Earthquake Transformer: an Attentive Deep-Learning Model for Simultaneous Earthquake Detection and Phase Picking. Nature Communications, 11(1):3952. https://doi.org/10.1038/s41467-020-17591-w
Pan, H., Yan, J., Zhang, Z., et al., 2009. Review on 1918 Nan’ao Ms 7. 3 Earthquake and Its Strong Aftershocks. Technology for Earthquake Disaster Prevention, 4(1):40-48 (in Chinese with English abstract).
Peng, Z. G., Zhao, P., 2009. Migration of Early Aftershocks Following the 2004 Parkfield Earthquake. Nature Geoscience, 2(12): 877-881. https://doi.org/10.1038/ngeo697
Ross, Z. E., Meier, M. A., Hauksson, E., et al., 2018. Generalized Seismic Phase Detection with Deep Learning. Bulletin of the Seismological Society of America, 108(5A): 2894-2901. https://doi.org/10.1785/0120180080
Schweitzer, J., 2001. HYPOSAT: an Enhanced Routine to Locate Seismic Events. Pure and Applied Geophysics, 158(1): 277-289. https://doi.org/10.1007/pl00001160
Wang, D., Chen, G.X., 2022. Seismic Wave Impedance Inversion Based on Temporal Convolutional Network. Earth Science, 47(4): 1492-1506 (in Chinese with English abstract).
Wang, J., Xiao, Z., Liu, C., et al., 2019. Deep Learning for Picking Seismic Arrival Times. Journal of Geophysical Research: Solid Earth, 124(7): 6612-6624. https://doi.org/10.1029/2019jb017536
Woollam, J., Münchmeyer, J., Tilmann, F., et al., 2022. SeisBench-A Toolbox for Machine Learning in Seismology. Seismological Research Letters, 93(3): 1695-1709. https://doi.org/10.1785/0220210324
Xiao, Z., Wang, J., Liu, C., et al., 2021. Siamese Earthquake Transformer: A Pair‐Input Deep‐Learning Model for Earthquake Detection and Phase Picking on a Seismic Array. Journal of Geophysical Research: Solid Earth, 126(5): e2020JB021444. https://doi.org/10.1029/ 2020jb021444
Yu, Z., Wang, W. 2022. LPPN: A Lightweight Network for Fast Phase Picking. Seismological Research Letters, 93(5): 2834-2846. https://doi.org/10.1785/0220210309
Zhou, Y. J., Yue, H., Kong, Q. K., et al., 2019. Hybrid Event Detection and Phase‐Picking Algorithm Using Convolutional and Recurrent Neural Networks. Seismological Research Letters, 90(3): 1079-1087. https://doi.org/10.1785/0220180319
Zhu, W. Q., Beroza, G. C., 2019. PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method. Geophysical Journal International, 216(1): 261-273. https://doi.org/10.1093/gji/ggy423
Zhu, W. Q., McBrearty, I. W., Mousavi, S. M., et al., 2021. Earthquake Phase Association Using a Bayesian Gaussian Mixture Model. Journal of Geophysical Research: Solid Earth, 127(5): 1-10. https://doi.org/10.1029/2021jb023249
范玉兰, 林纪曾, 胡瑞贺, 等, 1990. 华南地区近震走时表的研制. 华南地震, 10(2): 1-16.
胡进军, 丁祎天, 张辉, 等, 2023. 基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学, 48(5): 1853-1864.
廖诗荣, 张红才, 范莉苹, 等, 2021. 实时智能地震处理系统研发及其在2021年云南漾濞Ms6.4地震中的应用. 地球物理学报, 64: 3632-3645.
潘华, 鄢家全, 张志中, 等, 2009. 1918年南澳7.3级地震与强余震之参数复核. 震灾防御技术, 4(1): 40-48.
王德涛, 陈国雄, 2022. 基于时间卷积网络的地震波阻抗反演. 地球科学, 47(4): 1492-1506.

致谢

本研究使用的数据由广东省地震局提供. 感谢中国地质大学(武汉)王墩教授和中国海洋大学邹志辉教授对本文修改过程中提出的意见和建议.

基金

国家重点研发专项(2021YFC3000702)
国家自然科学基金项目(U2139205)
广东省地震局青年地震科研基金(GDDZY202301)

评论

PDF(2511 KB)

Accesses

Citation

Detail

段落导航
相关文章

/