
基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁
李宏伟, 徐志国, 史健宇, 王宗辰, 杨怀玮
基于俯冲带动力学参数评估琉球海沟对我国东南沿岸的海啸威胁
Tsunami Potential Threat from the Ryukyu Trench on Chinese Coast Based on Subduction Zone Dynamics Parameters
为了提升我国沿海海啸防灾减灾能力,加强民众海啸风险防范意识,系统地分析了琉球海沟俯冲带地震所引发海啸对我国大陆东南沿岸及台湾东部的潜在威胁,基于逻辑树与蒙特卡洛随机模拟的概率性方法对其海啸风险进行定量评估. 考虑到琉球海沟历史地震记录稀少,基于俯冲带的动力学参数对该区域潜在地震的最大震级进行了修正. 与此同时,结合前人对该区域的古海啸研究成果建立了海啸源参数逻辑树,分析了评估结果的不确定性.研究结果表明,2000年重现期下台湾东部宜兰县和花莲县周边的最大海啸波幅可以达到2~3 m;上海和浙江舟山的最大海啸波幅也能达到0.6 m和0.8 m左右.由于琉球海沟历史上没有灾害性海啸,其对东南沿岸和台湾东部的海啸威胁难以量化评估,模拟结果为今后该地区的海啸防御提供了理论依据.
In order to improve tsunami mitigation capabilities along the coast of China and to increase public awareness of tsunami hazards, this paper systematically analyses the potential threat of tsunamis caused by earthquakes in the Ryukyu Trench subduction zone off the southeast coast of China and the eastern part of Taiwan Province. We quantitatively assess their tsunami hazard based on a probabilistic approach of logic tree and Monte Carlo simulation. Considering the scarcity of historical earthquake records in the Ryukyu Trench, we determined the maximum magnitude of potential earthquakes in the region based on the dynamic parameters of the subduction zone. At the same time, a logical tree of tsunami source parameters was constructed to analyse the uncertainty of the assessment results by integrating previous research results on paleotsunamis in the region. The results show that the maximum tsunami wave amplitude can reach 2-3 m around Yilan and Hualien counties in eastern Taiwan Province in the return period of 2000 years; the maximum tsunami wave amplitude can also reach about 0.6 m and 0.8 m in Shanghai and Zhoushan at the same time. Therefore, although there are almost no catastrophic tsunami events in the historical record of the Ryukyu Trench, its tsunami threat to the southeast coast of China, especially the eastern part of Taiwan, cannot be ignored.
琉球海沟 / 地震 / 海啸 / 动力学参数 / 危险性评估
Ryukyu Trench / earthquake / tsunami / dynamics parameters / hazard assessment
P315
Ando, M., Kitamura, A., Tu, Y., et al., 2018. Source of High Tsunamis along the Southernmost Ryukyu Trench Inferred from Tsunami Stratigraphy. Tectonophysics, 722:265-276. https://doi.org/10.1016/j.tecto.2017.11.007
|
Ando, M., Nakamura, M., Matsumoto, T., et al., 2009. Is the Ryukyu Subduction Zone in Japan Coupled or Decoupled? The Necessity of Seafloor Crustal Deformation Observation. Earth, Planets and Space, 61:1031-1039. https://doi.org/ 10.1186/Bf03352954
|
Annaka, T., Satake, K., Sakakiyama, T.,et al., 2007. Logic-Tree Approach for Probabilistic Tsunami Hazard Analysis and Its Applications to the Japanese Coasts. Pure and Applied Geophysics,164:577-592.
|
Bird, P., Kagan, Y. Y., 2004. Plate-Tectonic Analysis of Shallow Seismicity: Apparent Boundary Width, Beta, Corner Magnitude, Coupled Lithosphere Thickness, and Coupling in Seven Tectonic Settings. Bulletin of the Seismological Society of America,94(6):2380-2399.
|
Blaser, L., Krüger, F., Ohrnberger, M., et al., 2010. Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6):2914-2926.
|
Cui, P.,Wang, J.,Wang, H.,et al.,2022. How to Scientifically Prevent,Manage and Prewarn Catastrophic Risk? Earth Science,47(10):3897-3899 (in Chinese with English abstract).
|
Davies, G., Griffin, J., 2020. Sensitivity of Probabilistic Tsunami Hazard Assessment to Far-Field Earthquake Slip Complexity and Rigidity Depth-Dependence: Case Study of Australia. Pure and Applied Geophysics, 177:1521-1548. https://doi.org/10.1007/s00024-019-02299-w
|
Engdahl, E.R.; Villaseñor, A., 2002. Global Seismicity: 1900-1999. In: Lee, W.H.K., Jennings, P., Kisslinger, C., eds., International Handbook of Earthquake and Engineering Seismology. Academic Press,Amsterdam, The Netherlands; Boston, MA, USA, 2: 665-690.
|
Fujiwara, O., Goto, K., Ando, R., et al., 2020. Paleotsunami Research Along the Nankai Trough and Ryukyu Trench Subduction Zones-Current Achievements and Future Challenges. Earth-Science Reviews, 210:103333.
|
Geist, E. L., Parsons, T., 2006. Probabilistic Analysis of Tsunami Hazards. Natural Hazards, 37: 277-314.
|
Goda, K., Song, J., 2016. Uncertainty Modeling and Visualization for Tsunami Hazard and Risk Mapping: a Case Study for the 2011 Tohoku Earthquake. Stochastic Environmental Research and Risk Assessment, 30:2271-2285.
|
Hayes, G. P., Moore, G. L., Portner, D. E., et al., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science, 362(6410): 58-61. https://doi.org/10.1126/science.aat4723
|
Hisamatsu, A., Goto, K., Imamura, F., 2014. Local Paleo-Tsunami Size Evaluation Using Numerical Modeling for Boulder Transport at Ishigaki Island, Japan. Episodes Journal of International Geoscience, 37(4):265-27.
|
Ishibashi, K., 1981. Specification of a Soon‐to‐Occur Seismic Faulting in the Tokai District, Central Japan, Based upon Seismotectonics. Earthquake Prediction: an International Review, 4:297-332.
|
Kagan, Y. Y., 2002a. Seismic Moment Distribution Revisited: I. Statistical Results. Geophysical Journal International, 148(3): 520-541. https://doi.org/10.1046/j.1365-246x. 2002.01594.x
|
Kagan, Y. Y., 2002b. Seismic Moment Distribution Revisited: II. Moment Conservation Principle. Geophysical Journal International, 149(3): 731–754. https://doi.org/10.1046/j.1365-246X.2002.01671.x
|
Kagan, Y. Y., Jackson, D. D., 2013. Tohoku Earthquake: A Surprise?. Bulletin of the Seismological Society of America, 103(2B):1181-1194..
|
Li, H., Yuan, Y., Xu, Z., et al., 2018. The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins. Earthquakes and Multi-Hazards Around the Pacific Rim, 1:157-176.
|
Li, L., Switzer, A. D., Chan, C. H., et al., 2016. How Heterogeneous Coseismic Slip Affects Regional Probabilistic Tsunami Hazard Assessment: A Case Study in the South China Sea. Journal of Geophysical Research: Solid Earth, 121(8): 6250-6272.
|
Mai, P. M., Beroza, G. C., 2002. A Spatial Random Field Model to Characterize Complexity in Earthquake Slip. Journal of Geophysical Research: Solid Earth, 107(B11):ESE-10.
|
Nakamura, M., Sunagawa, N., 2015. Activation of Very Low Frequency Earthquakes by Slow Slip Events in the Ryukyu Trench. Geophysical Research Letters, 42(4): 1076-1082 https://doi.org/10.1002/2014GL062929
|
Papazachos, B. C., Scordilis, E. M., Panagiotopoulos, D. G., et al., 2004. Global Relations between Seismic Fault Parameters and Moment Magnitude of Earthquakes. Bulletin of the Geological Society of Greece, 36(3): 1482-1489.
|
Rong, Y., Jackson, D. D., Magistrale, H., et al., 2014. Magnitude Limits of Subduction Zone Earthquakes. Bulletin of the Seismological Society of America, 104(5): 2359-2377. https://doi.org/ 10.1785/0120130287
|
Scala, A., Lorito, S., Romano, F., et al., 2020. Effect of Shallow Slip Amplification Uncertainty on Probabilistic Tsunami Hazard Analysis in Subduction Zones: Use of Long-Term Balanced Stochastic Slip Models. Pure and Applied Geophysics, 177(3): 1497-1520.
|
Stirling, M., Goded, T., Berryman, K., et al., 2013. Selection of Earthquake Scaling Relationships for Seismic‐Hazard Analysis. Bulletin of the Seismological Society of America, 103(6): 2993-3011. https://doi.org/10.1785/0120130052
|
Tadokoro, K., Nakamura, M., Ando, M., et al., 2018. Interplate Coupling State at the Nansei‐Shoto (Ryukyu) Trench, Japan, Deduced from Seafloor Crustal Deformation Measurements. Geophysical Research Letters, 45(14):6869-6877. https://doi.org/10.1029/2018GL078655
|
Wang, Z., Yuan, Y., Wang, P., et al., 2019. Development and Validation of a Tsunami Amplitude Forecast System Covering the Whole Pacific Ocean. Haiyang Xuebao, 41(2):1-13 (in Chinese with English abstract).
|
Xiao, W.J.,Song, D.F.,Zhang, J.E.,et al.,2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science,47(9):3073-3106 (in Chinese with English abstract).
|
Xie, Z.; Wang, E.; Lyu, Y., 2022. Seismicity and Stress State in the Ryukyu Islands Subduction Zone. Sustainability, 14(22): 15146. https://doi.org/10.3390/ su142215146
|
Yu, F.J., Yuan, Y., Wang, P.T., et al., 2020. Modern Technologies in Earthquake-Generated Tsunami Early Warning.Science Press,Beijing,222 (in Chinese).
|
Yuan, Y., Li, H., Wei, Y., Shi, F., et al., 2021. Probabilistic Tsunami Hazard Assessment (PTHA) for Southeast Coast of Chinese Mainland and Taiwan Island. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB020344.
|
崔鹏,王姣,王昊,等, 2022.如何科学防控与预警巨灾风险?地球科学,47(10):3897-3899.
|
王宗辰, 原野, 王培涛, 等, 2019. 一个覆盖太平洋区域的地震海啸波幅预报系统及检验. 海洋学报, 41(2):1-13.
|
肖文交,宋东方,张继恩,等,2022. 俯冲带结构演变解剖与研究展望. 地球科学,47(9):3073-3106.
|
于福江,原野,王培涛,等,2020. 现代地震海啸预警技术. 北京:科学出版社,222.
|
感谢编辑部老师的辛勤付出和审稿人提出的宝贵意见. 本文部分图件通过GMT软件绘制,在此表示衷心感谢!
/
〈 |
|
〉 |