基于XGBoost的现地地震烈度阈值实时判别模型

李山有, 陈欣, 卢建旗, 马强, 谢志南, 陶冬旺, 李伟

PDF(3429 KB)
PDF(3429 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (02) : 379-390. DOI: 10.3799/dqkx.2023.159

基于XGBoost的现地地震烈度阈值实时判别模型

作者信息 +

Real-Time Discrimination Model for Local Earthquake Intensity Threshold Based on XGBoost

Author information +
History +

摘要

如何在地震中利用台站接收到的少量P波信息预测该台站处的最终烈度是否会超越6度是地震预警研究中亟待解决的关键问题. 提出了一种基于极限梯度提升树(XGBoost)的现地烈度阈值实时判别模型,该模型以由台站接收到P波后3秒内的信息计算的5种特征作为输入参数,以该台站处的最终仪器地震烈度是否会超越6度作为阈值. 选取1996—2022年日本K-NET台网记录的460次地震的4 353条加速度记录建立了基于P波前3秒信息的烈度阈值实时判别模型(XGBoost-ITD). 结果表明,该模型对低烈度的判别准确率为93%,对高烈度的判别准确率为88%. 在相同数据集条件下,相较于支持向量机分类方法及传统方法,XGBoost方法对现地烈度阈值判别具有更高的精度.

Abstract

A key challenge in earthquake early warning (EEW) research is to predict whether the final intensity at a station during an earthquake will exceed 6 degrees using only a small amount of P-wave information received by the station. In this paper, we propose a real-time intensity threshold discrimination model based on Extreme Gradient Boosting Tree (XGBoost). The model uses five features calculated from the information within 3 seconds after receiving P-waves as input features, and uses the threshold of whether the final instrumental seismic intensity at the station will exceed 6 degrees. A total of 4 353 acceleration records from 460 earthquakes recorded by the Japanese K-NET seismic network from 1996 to 2022 were used to establish the XGBoost-based real-time intensity threshold discrimination model (XGBoost-ITD). The results indicate that the model's discrimination accuracy rate is 93% for low intensity and 88% for high intensity. Compared with the support vector machine classification method and the traditional method under the same dataset, the XGBoost method shows higher discrimination accuracy.

关键词

现地预警 / XGBoost / SHAP / 机器学习 / 天然地震

Key words

onsite warning / XGBoost / SHAP / machine learning / earthquake

中图分类号

P315.3 / P315.7 / P315.9

引用本文

导出引用
李山有 , 陈欣 , 卢建旗 , . 基于XGBoost的现地地震烈度阈值实时判别模型. 地球科学. 2024, 49(02): 379-390 https://doi.org/10.3799/dqkx.2023.159
Li Shanyou, Chen Xin, Lu Jianqi, et al. Real-Time Discrimination Model for Local Earthquake Intensity Threshold Based on XGBoost[J]. Earth Science. 2024, 49(02): 379-390 https://doi.org/10.3799/dqkx.2023.159

参考文献

Allen, R. M., Gasparini, P., Kamigaichi, O., et al., 2009. The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5): 682-693. https://doi.org/10.1785/gssrl.80.5.682
Asselman, A., Khaldi, M., Aammou, S., 2021. Enhancing the Prediction of Student Performance Based on the Machine Learning XGBoost Algorithm. Interactive Learning Environments, 31(6): 3360-3379. https://doi.org/10.1080/10494820.2021.1928235
Böse, M., Felizardo, C., Heaton, T. H., 2015. Finite-Fault Rupture Detector (FinDer): Going Real-Time in Californian ShakeAlert Warning System. Seismological Research Letters, 86(6): 1692-1704. https://doi.org/10.1785/0220150154
Chen,T.Q.,Guestrin,C.,2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data,785-794. https://doi.org/10.1145/2939672. 2939785
Hildyard, M. W., Rietbrock, A., 2010. Tpd, a Damped Predominant Period Function with Improvements for Magnitude Estimation. Bulletin of the Seismological Society of America, 100(2): 684-698. https://doi.org/10.1785/0120080368
Hao,H.Z., Gu,Q., Hu,X.M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science,46(9): 3091-3106. (in Chinese with English abstract).
Hu,J.J.,Ding,Y.T.,Zhang,H.,et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864. (in Chinese with English abstract)
Jin,X.,Zhang,H.C.,Li,J.,et al.,2012.Research on Continuous Location Method Used in Earthquake Early Warning System. Chinese Journal of Geophysics,55(3):925-936. (in Chinese with English abstract)
Jiang,B.G.,Ma,Q.,Tao,D.W.,2022.Continuous Estimation of Earthquake Early Warning Magnitude Based on Convolutional Neural Network. World Earthquake Engineering,38(1):213-228.(in Chinese with English abstract)
Kanamori, H., 2005. Real-Time Seismology and Earthquake Damage Mitigation. Annual Review of Earth and Planetary Sciences, 33(1): 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
Kanamori, H., 2015. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9): 2335-2341. https://doi.org/10.1007/s00024-014-0964-y
Lundberg,S.M.,Lee,S.I.,2017.A Unified Approach to Interpreting Model Predictions. Computer Science, 1-10. https://doi.org/ https://doi.org/10.48550/arXiv.1705.07874.
Lundberg,S.M.,Erion,G.G.,Lee,S.I.,2018.Consistent Individualized Feature Attribution for Tree Ensembles. Computer Science,1-9. https://doi.org/10.48550/arXiv.1802.03888.
Li,S.Y.,2018.Approaching the Earthquake Early Warning. Overview of Disaster Prevention, (2):14-23. (in Chinese)
Lu, J. Q., Li, S. Y., He, P. Y., et al., 2020. Energy- and Predominant-Period-Dependent P-Wave Onset Picker (EDP-Picker). Seismological Research Letters, 91(4): 2355-2367. https://doi.org/10.1785/0220190260
Li,S.Y.,Wang.B.R., Lu J.Q., et al. 2023. Prediction of Instrumental Intensity for A Single Station Using A LSTM Neural Network. Chinese Journal of Geophysics (in Chinese with English abstract).
Liu,L.,Shen,J.K.,Zhang,L.X.,2023.A Machine Learning-Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779. (in Chinese with English abstract).
Ma,Q.,2008.Study and Application on Earthquake Early Warning (Dissertation). Institute of Engineering Mechanics China Earthquake Administration, Harbin(in Chinese with English abstract).
Nielsen,D.,2016.Tree Boosting With XGBoost: Why Does XGBoost Win "Every" Machine Learning Competition? (Dissertation).Norwegian University of Science and Technology, Norway.
Nicole,D.C.,Tiziana,D.A.,Claudio,D.S.,et al.,2023.Comparing Filter and Wrapper Approaches for Feature Selection in Handwritten Character Recognition, Pattern Recognition Letters, 168(5): 39-46. https://doi.org/10.1016/j.patrec.2023.02.028
Peng, C. Y., Yang, J. S., Zheng, Y., et al., 2017. New τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44(4): 1724-1731. https://doi.org/10.1002/2016gl071672
Satriano, C., Lomax, A., Zollo, A., 2008. Real-Time Evolutionary Earthquake Location for Seismic Early Warning. Bulletin of the Seismological Society of America, 98(3): 1482-1494. https://doi.org/10.1785/0120060159
State Administration for Market Regulation, Standardization Administration of China.,2020.GB/T-17742-2020, The Chinese seismic intensity scale. China Quality and Standards Publishing & Media Co.,Ltd, Beijing (in Chinese)
Song,J.D.,Yu,C.,Li,S.Y.,2022.Continuous Prediction of Onsite PGV for Earthquake Early Warning Based on Least Squares Support Vector Machine. Chinese Journal of Geophysics,64(2):555-568. (in Chinese with English abstract)
Wu, Y. M., Kanamori,H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95(3): 1181-1185. https://doi.org/10.1785/0120040193
Wu, Y. M., Kanamori, H., 2008. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals. Sensors, 8(1): 1-9. https://doi.org/10.3390/s8010001
Wen,Z.Y.,He,B.S.,Kotagiri,R.,et al.,2018.Efficient Gradient Boosted Decision Tree Training on GPUs.2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).234-243. https://doi.org/ 10.1109/IPDPS40821.2018
Wang,A.,Li,S.Y.,Lu,J.Q.,et al., 2023. Prediction of PGA in Earthquake Early Warning Using a Long Short-Term Memory Neural Network. Geophysical Journal International, 234(1): 12-24. https://doi.org/10.1093/gji/ggad067
Wang,M.,Yang,J.L.,Wang,X.,et al.,2023. Identification of Shale Lithofacies by Well Logs Based on Random Forest Algorithm. Earth Science, 48(1): 130-142. (in Chinese with English abstract).
Yamada, M., Heaton, T., Beck, J., 2007. Real-Time Estimation of Fault Rupture Extent Using Near-Source Versus Far-Source Classification. Bulletin of the Seismological Society of America, 97(6): 1890-1910. https://doi.org/10.1785/0120060243
Yu,C.,Song,J.D.,Li,S.Y.,2021.Prediction of Peak Ground Motion for On-Site Earthquake Early Warning Based on SVM. Journal of Vibration and Shock, 40(3): 63-72. (in Chinese with English abstract).
国家市场监督管理总局,国家标准化管理委员会,2020.GB/T-17742-2020,中国地震烈度表.北京:中国标准出版社.
郝慧珍,顾庆,胡修棉,2021.基于机器学习的矿物智能识别方法研究进展与展望.地球科学,46(9):3091-3106.
胡进军,丁祎天,张辉,等,2023.基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学,48(5): 1853-1864.
金星,张红才,李军,等,2012.地震预警连续定位方法研究.地球物理学报, 55(3):925-936.
江炳根,马强,陶冬旺,2022.基于卷积神经网络的地震预警震级持续估算方法研究.世界地震工程,38(1):213-228.
李山有,2018.走近地震预警.防灾博览,(2):14-23.
李山有,王博睿,卢建旗等,2023.基于LSTM网络的单台仪器地震烈度预测模型.地球物理学报.
刘丽,沈俊凯,张令心,2023.基于机器学习的砖砌体房屋震害快速预测方法.地球科学, 48(5): 1769-1779.
马强,2008.地震预警技术研究及应用(博士学位论文).哈尔滨: 中国地震局工程力学研究所.
宋晋东,余聪,李山有,2021.地震预警现地PGV连续预测的最小二乘支持向量机模型.地球物理学报, 64(2):555-568.
王民, 杨金路, 王鑫, 等. 2023. 基于随机森林算法的泥页岩岩相测井识别.地球科学,48(1):130-142.
余聪,宋晋东,李山有,2021.基于支持向量机的现地地震预警地震动峰值预测.振动与冲击,40(3):63-72.

致谢

中国地震局工程力学研究所基本科研业务费专项资助项目(2018B02);国家重点研发计划项目(2018YFC1504004);黑龙江省自然科学基金优秀青年基金(YQ2020E005);国家自然科学基金(U2039209). 使用开源平台Anaconda、Python来设计模型. 日本防灾科学技术研究所(NIED)的K-NET为本研究提供数据支持. 中国地震局工程力学研究所强震动观测中心为本研究提供数据支持.

基金

中国地震局工程力学研究所基本科研业务费专项资助项目(2018B02)
国家重点研发计划项目(2018YFC1504004)
黑龙江省自然科学基金优秀青年基金(YQ2020E005)
国家自然科学基金(U2039209)

评论

PDF(3429 KB)

Accesses

Citation

Detail

段落导航
相关文章

/