
基于XGBoost的现地地震烈度阈值实时判别模型
李山有, 陈欣, 卢建旗, 马强, 谢志南, 陶冬旺, 李伟
基于XGBoost的现地地震烈度阈值实时判别模型
Real-Time Discrimination Model for Local Earthquake Intensity Threshold Based on XGBoost
如何在地震中利用台站接收到的少量P波信息预测该台站处的最终烈度是否会超越6度是地震预警研究中亟待解决的关键问题. 提出了一种基于极限梯度提升树(XGBoost)的现地烈度阈值实时判别模型,该模型以由台站接收到P波后3秒内的信息计算的5种特征作为输入参数,以该台站处的最终仪器地震烈度是否会超越6度作为阈值. 选取1996—2022年日本K-NET台网记录的460次地震的4 353条加速度记录建立了基于P波前3秒信息的烈度阈值实时判别模型(XGBoost-ITD). 结果表明,该模型对低烈度的判别准确率为93%,对高烈度的判别准确率为88%. 在相同数据集条件下,相较于支持向量机分类方法及传统方法,XGBoost方法对现地烈度阈值判别具有更高的精度.
A key challenge in earthquake early warning (EEW) research is to predict whether the final intensity at a station during an earthquake will exceed 6 degrees using only a small amount of P-wave information received by the station. In this paper, we propose a real-time intensity threshold discrimination model based on Extreme Gradient Boosting Tree (XGBoost). The model uses five features calculated from the information within 3 seconds after receiving P-waves as input features, and uses the threshold of whether the final instrumental seismic intensity at the station will exceed 6 degrees. A total of 4 353 acceleration records from 460 earthquakes recorded by the Japanese K-NET seismic network from 1996 to 2022 were used to establish the XGBoost-based real-time intensity threshold discrimination model (XGBoost-ITD). The results indicate that the model's discrimination accuracy rate is 93% for low intensity and 88% for high intensity. Compared with the support vector machine classification method and the traditional method under the same dataset, the XGBoost method shows higher discrimination accuracy.
现地预警 / XGBoost / SHAP / 机器学习 / 天然地震
onsite warning / XGBoost / SHAP / machine learning / earthquake
P315.3 / P315.7 / P315.9
Allen, R. M., Gasparini, P., Kamigaichi, O., et al., 2009. The Status of Earthquake Early Warning around the World: An Introductory Overview. Seismological Research Letters, 80(5): 682-693. https://doi.org/10.1785/gssrl.80.5.682
|
Asselman, A., Khaldi, M., Aammou, S., 2021. Enhancing the Prediction of Student Performance Based on the Machine Learning XGBoost Algorithm. Interactive Learning Environments, 31(6): 3360-3379. https://doi.org/10.1080/10494820.2021.1928235
|
Böse, M., Felizardo, C., Heaton, T. H., 2015. Finite-Fault Rupture Detector (FinDer): Going Real-Time in Californian ShakeAlert Warning System. Seismological Research Letters, 86(6): 1692-1704. https://doi.org/10.1785/0220150154
|
Chen,T.Q.,Guestrin,C.,2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data,785-794. https://doi.org/10.1145/2939672. 2939785
|
Hildyard, M. W., Rietbrock, A., 2010. Tpd, a Damped Predominant Period Function with Improvements for Magnitude Estimation. Bulletin of the Seismological Society of America, 100(2): 684-698. https://doi.org/10.1785/0120080368
|
Hao,H.Z., Gu,Q., Hu,X.M., 2021. Research Advances and Prospective in Mineral Intelligent Identification Based on Machine Learning. Earth Science,46(9): 3091-3106. (in Chinese with English abstract).
|
Hu,J.J.,Ding,Y.T.,Zhang,H.,et al., 2023. A Real-Time Seismic Intensity Prediction Model Based on Long Short-Term Memory Neural Network. Earth Science, 48(5): 1853-1864. (in Chinese with English abstract)
|
Jin,X.,Zhang,H.C.,Li,J.,et al.,2012.Research on Continuous Location Method Used in Earthquake Early Warning System. Chinese Journal of Geophysics,55(3):925-936. (in Chinese with English abstract)
|
Jiang,B.G.,Ma,Q.,Tao,D.W.,2022.Continuous Estimation of Earthquake Early Warning Magnitude Based on Convolutional Neural Network. World Earthquake Engineering,38(1):213-228.(in Chinese with English abstract)
|
Kanamori, H., 2005. Real-Time Seismology and Earthquake Damage Mitigation. Annual Review of Earth and Planetary Sciences, 33(1): 195-214. https://doi.org/10.1146/annurev.earth.33.092203.122626
|
Kanamori, H., 2015. Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9): 2335-2341. https://doi.org/10.1007/s00024-014-0964-y
|
Lundberg,S.M.,Lee,S.I.,2017.A Unified Approach to Interpreting Model Predictions. Computer Science, 1-10. https://doi.org/ https://doi.org/10.48550/arXiv.1705.07874.
|
Lundberg,S.M.,Erion,G.G.,Lee,S.I.,2018.Consistent Individualized Feature Attribution for Tree Ensembles. Computer Science,1-9. https://doi.org/10.48550/arXiv.1802.03888.
|
Li,S.Y.,2018.Approaching the Earthquake Early Warning. Overview of Disaster Prevention, (2):14-23. (in Chinese)
|
Lu, J. Q., Li, S. Y., He, P. Y., et al., 2020. Energy- and Predominant-Period-Dependent P-Wave Onset Picker (EDP-Picker). Seismological Research Letters, 91(4): 2355-2367. https://doi.org/10.1785/0220190260
|
Li,S.Y.,Wang.B.R., Lu J.Q., et al. 2023. Prediction of Instrumental Intensity for A Single Station Using A LSTM Neural Network. Chinese Journal of Geophysics (in Chinese with English abstract).
|
Liu,L.,Shen,J.K.,Zhang,L.X.,2023.A Machine Learning-Based Method for Rapid Prediction of Earthquake Damage in Brick Masonry Houses. Earth Science, 48(5): 1769-1779. (in Chinese with English abstract).
|
Ma,Q.,2008.Study and Application on Earthquake Early Warning (Dissertation). Institute of Engineering Mechanics China Earthquake Administration, Harbin(in Chinese with English abstract).
|
Nielsen,D.,2016.Tree Boosting With XGBoost: Why Does XGBoost Win "Every" Machine Learning Competition? (Dissertation).Norwegian University of Science and Technology, Norway.
|
Nicole,D.C.,Tiziana,D.A.,Claudio,D.S.,et al.,2023.Comparing Filter and Wrapper Approaches for Feature Selection in Handwritten Character Recognition, Pattern Recognition Letters, 168(5): 39-46. https://doi.org/10.1016/j.patrec.2023.02.028
|
Peng, C. Y., Yang, J. S., Zheng, Y., et al., 2017. New τc Regression Relationship Derived from all P Wave Time Windows for Rapid Magnitude Estimation. Geophysical Research Letters, 44(4): 1724-1731. https://doi.org/10.1002/2016gl071672
|
Satriano, C., Lomax, A., Zollo, A., 2008. Real-Time Evolutionary Earthquake Location for Seismic Early Warning. Bulletin of the Seismological Society of America, 98(3): 1482-1494. https://doi.org/10.1785/0120060159
|
State Administration for Market Regulation, Standardization Administration of China.,2020.GB/T-17742-2020, The Chinese seismic intensity scale. China Quality and Standards Publishing & Media Co.,Ltd, Beijing (in Chinese)
|
Song,J.D.,Yu,C.,Li,S.Y.,2022.Continuous Prediction of Onsite PGV for Earthquake Early Warning Based on Least Squares Support Vector Machine. Chinese Journal of Geophysics,64(2):555-568. (in Chinese with English abstract)
|
Wu, Y. M., Kanamori,H., 2005. Rapid Assessment of Damage Potential of Earthquakes in Taiwan from the Beginning of P Waves. Bulletin of the Seismological Society of America, 95(3): 1181-1185. https://doi.org/10.1785/0120040193
|
Wu, Y. M., Kanamori, H., 2008. Development of an Earthquake Early Warning System Using Real-Time Strong Motion Signals. Sensors, 8(1): 1-9. https://doi.org/10.3390/s8010001
|
Wen,Z.Y.,He,B.S.,Kotagiri,R.,et al.,2018.Efficient Gradient Boosted Decision Tree Training on GPUs.2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).234-243. https://doi.org/ 10.1109/IPDPS40821.2018
|
Wang,A.,Li,S.Y.,Lu,J.Q.,et al., 2023. Prediction of PGA in Earthquake Early Warning Using a Long Short-Term Memory Neural Network. Geophysical Journal International, 234(1): 12-24. https://doi.org/10.1093/gji/ggad067
|
Wang,M.,Yang,J.L.,Wang,X.,et al.,2023. Identification of Shale Lithofacies by Well Logs Based on Random Forest Algorithm. Earth Science, 48(1): 130-142. (in Chinese with English abstract).
|
Yamada, M., Heaton, T., Beck, J., 2007. Real-Time Estimation of Fault Rupture Extent Using Near-Source Versus Far-Source Classification. Bulletin of the Seismological Society of America, 97(6): 1890-1910. https://doi.org/10.1785/0120060243
|
Yu,C.,Song,J.D.,Li,S.Y.,2021.Prediction of Peak Ground Motion for On-Site Earthquake Early Warning Based on SVM. Journal of Vibration and Shock, 40(3): 63-72. (in Chinese with English abstract).
|
国家市场监督管理总局,国家标准化管理委员会,2020.GB/T-17742-2020,中国地震烈度表.北京:中国标准出版社.
|
郝慧珍,顾庆,胡修棉,2021.基于机器学习的矿物智能识别方法研究进展与展望.地球科学,46(9):3091-3106.
|
胡进军,丁祎天,张辉,等,2023.基于长短期记忆神经网络的实时地震烈度预测模型. 地球科学,48(5): 1853-1864.
|
金星,张红才,李军,等,2012.地震预警连续定位方法研究.地球物理学报, 55(3):925-936.
|
江炳根,马强,陶冬旺,2022.基于卷积神经网络的地震预警震级持续估算方法研究.世界地震工程,38(1):213-228.
|
李山有,2018.走近地震预警.防灾博览,(2):14-23.
|
李山有,王博睿,卢建旗等,2023.基于LSTM网络的单台仪器地震烈度预测模型.地球物理学报.
|
刘丽,沈俊凯,张令心,2023.基于机器学习的砖砌体房屋震害快速预测方法.地球科学, 48(5): 1769-1779.
|
马强,2008.地震预警技术研究及应用(博士学位论文).哈尔滨: 中国地震局工程力学研究所.
|
宋晋东,余聪,李山有,2021.地震预警现地PGV连续预测的最小二乘支持向量机模型.地球物理学报, 64(2):555-568.
|
王民, 杨金路, 王鑫, 等. 2023. 基于随机森林算法的泥页岩岩相测井识别.地球科学,48(1):130-142.
|
余聪,宋晋东,李山有,2021.基于支持向量机的现地地震预警地震动峰值预测.振动与冲击,40(3):63-72.
|
中国地震局工程力学研究所基本科研业务费专项资助项目(2018B02);国家重点研发计划项目(2018YFC1504004);黑龙江省自然科学基金优秀青年基金(YQ2020E005);国家自然科学基金(U2039209). 使用开源平台Anaconda、Python来设计模型. 日本防灾科学技术研究所(NIED)的K-NET为本研究提供数据支持. 中国地震局工程力学研究所强震动观测中心为本研究提供数据支持.
/
〈 |
|
〉 |