石油污染场地土壤-地下水系统介质场中微生物群落结构垂向分布和功能差异

丁妍, 周爱国, 李小倩, 何宁洁, 邢新丽

PDF(3860 KB)
PDF(3860 KB)
地球科学 ›› 2025, Vol. 50 ›› Issue (05) : 2011-2022. DOI: 10.3799/dqkx.2023.156

石油污染场地土壤-地下水系统介质场中微生物群落结构垂向分布和功能差异

作者信息 +
History +

摘要

重点行业场地土壤‒地下水有机污染是水土环境治理修复亟待解决的重要问题,微生物群落在土壤‒地下水系统中的分布对有机污染物迁移转化与生物降解具有重要作用.选取西北黄土高原某石化场地典型垂向剖面,基于16S rRNA基因高通量测序技术,精细刻画土壤‒包气带‒潜水含水层‒弱透水层连续非均质介质场中微生物群落结构、多样性的垂向分布特征及其代谢功能差异,揭示岩性、深度因素对微生物群落结构和功能垂向分布的影响.研究表明,土壤‒地下水系统介质场中微生物群落结构与多样性的垂向分布存在显著差异,并表现出不同的代谢功能和石油污染物降解模式.包气带层中的丙酸杆菌目、潜水含水层中的β-变形菌目既是优势菌种,又是组间的标志差异菌种,贡献了相关主要差异代谢功能.深度和岩性分别影响了不同的代谢功能,包气带、含水层及其下伏弱透水层中微生物以协同作用形式分别围绕芳香族化合物降解、暗氢氧化功能实现石油污染物的降解.

Abstract

Soil-groundwater organic pollution in key industrial sites is a critical problem to be solved urgently in restoration of water and soil environment. The distribution of microbial communities in the soil-groundwater system plays an important role in the migration, transformation and biodegradation of these organic pollutants. Taking a typical vertical profile of a petrochemical site in the Loess Plateau in Northwest China as an example, based on 16S rRNA gene high-throughput sequencing technology, this study finely describes the vertical distribution characteristics of microbial communities structure, diversity and their metabolic function differences in the soil-vadose zone-phreatic aquifer-aquitard continuous heterogeneous media field, and reveals the impact of lithological composition and depth on the vertical distribution of microbial community structure and function.The results suggested that there were significant differences in the vertical distribution of microbial community structure and diversity in the media field of the soil-groundwater system, which exhibited different metabolic functions and degradation modes of petroleum pollutants.Propionibacteriales in the vadose zone layer and Betaproteobacteriales in the phreatic aquifer were not only the dominant species, but also the biomarker species among the groups, which contributed to the main relevant different metabolic functions.Depth and lithology separately affected different metabolic functions. Microorganisms in the vadose zone, aquifer and its underlying aquitard acted synergistically to degrade petroleum pollutants with aromatic compounds degradation and dark hydrogen oxidation, respectively.

关键词

介质场 / 微生物 / 群落结构 / 代谢功能 / 地下水 / 土壤‒地下水系统 / 污染场地 / 黄土高原 / 水文地质.

Key words

media field / microorganisms / community structure / metabolic function / groundwater / soil-groundwater system / contaminated site / Loess Plateau / hydrogeology

中图分类号

P64

引用本文

导出引用
丁妍 , 周爱国 , 李小倩 , . 石油污染场地土壤‒地下水系统介质场中微生物群落结构垂向分布和功能差异. 地球科学. 2025, 50(05): 2011-2022 https://doi.org/10.3799/dqkx.2023.156

参考文献

Abdu, N., Abdullahi, A. A., Abdulkadir, A., 2017. Heavy Metals and Soil Microbes. Environmental Chemistry Letters, 15(1): 65-84. https://doi.org/10.1007/s10311-016-0587-x
Bruckberger, M., Gleeson, D., Bastow, T., et al., 2021. Unravelling Microbial Communities Associated with Different Light Non-Aqueous Phase Liquid Types Undergoing Natural Source Zone Depletion Processes at a Legacy Petroleum Site. Water, 13(7): 898. https://doi.org/10.3390/w13070898
Bruckberger, M. C., Morgan, M. J., Bastow, T. P., et al., 2020. Investigation into the Microbial Communities and Associated Crude Oil-Contamination along a Gulf War Impacted Groundwater System in Kuwait. Water Research,170: 115314. https://doi.org/10.1016/j.watres.2019.115314
Cai, P.P., Ning, Z., He, Z., et al., 2018. Microbial Community Distributions in Soils of an Oil Exploitation Site. Environmental Science, 39(7):3329-3338 (in Chinese with English abstract).
Cavelan, A., Golfier, F., Colombano, S., et al., 2022. A Critical Review of the Influence of Groundwater Level Fluctuations and Temperature on LNAPL Contaminations in the Context of Climate Change. Science of the Total Environment, 806: 150412. https://doi.org/10.1016/j.scitotenv.2021.150412
Gao, S., Liang, J. D., Teng, T. T., et al., 2019. Petroleum Contamination Evaluation and Bacterial Community Distribution in a Historic Oilfield Located in Loess Plateau in China. Applied Soil Ecology, 136: 30-42. https://doi.org/10.1016/j.apsoil.2018.12.012
Griebler, C., Lueders, T., 2009. Microbial Biodiversity in Groundwater Ecosystems. Freshwater Biology, 54(4): 649-677. https://doi.org/10.1111/j.1365-2427.2008.02013.x
Guo, Y.L., Zhang, C., Wu, Q., et al., 2021. Natural Attenuation Mechanisms of Petroleum Hydrocarbons in a Fractured Karst Aquifer. Earth Science, 46(6):2258-2266 (in Chinese with English abstract).
Huang, L. P., Ye, J. Y., Jiang, K. M., et al., 2021. Oil Contamination Drives the Transformation of Soil Microbial Communities: Co-Occurrence Pattern, Metabolic Enzymes and Culturable Hydrocarbon-Degrading Bacteria. Ecotoxicology and Environmental Safety, 225: 112740. https://doi.org/10.1016/j.ecoenv.2021.112740
Karimi, B., Terrat, S., Dequiedt, S., et al., 2018. Biogeography of Soil Bacteria and Archaea across France. Science Advances,4(7): eaat1808. https://doi.org/10.1126/sciadv.aat1808
Li, X., Wen, Z., Zhan, H. B., et al., 2021. Laboratory Observations for Two-Dimensional Solute Transport in an Aquifer-Aquitard System. Environmental Science and Pollution Research International, 28(29): 38664-38678. https://doi.org/10.1007/s11356-021-13123-1
Liao, W. F., Tong, D., Li, Z. W., et al., 2021. Characteristics of Microbial Community Composition and Its Relationship with Carbon, Nitrogen and Sulfur in Sediments. Science of the Total Environment, 795: 148848. https://doi.org/10.1016/j.scitotenv.2021.148848
Lin, Y. B., Ye, Y. M., Hu, Y. M., et al., 2019. The Variation in Microbial Community Structure under Different Heavy Metal Contamination Levels in Paddy Soils. Ecotoxicology and Environmental Safety, 180: 557-564. https://doi.org/10.1016/j.ecoenv.2019.05.057
Liu, Q. L., Tang, J. C., Liu, X. M., et al., 2019. Vertical Response of Microbial Community and Degrading Genes to Petroleum Hydrocarbon Contamination in Saline Alkaline Soil. Journal of Environmental Sciences, 81: 80-92. https://doi.org/10.1016/j.jes.2019.02.001
Ma, Y., Zhao, H. Z., Shan, Q. J., et al., 2021. K-Strategy Species Plays a Pivotal Role in the Natural Attenuation of Petroleum Hydrocarbon Pollution in Aquifers. Journal of Hazardous Materials, 420: 126559. https://doi.org/10.1016/j.jhazmat.2021.126559
Ma, Y. J., Wang, Y. T., Chen, Q., et al., 2020. Assessment of Heavy Metal Pollution and the Effect on Bacterial Community in Acidic and Neutral Soils. Ecological Indicators,117: 106626. https://doi.org/10.1016/j.ecolind.2020.106626
Mineo, S., 2023. Groundwater and Soil Contamination by LNAPL: State of the Art and Future Challenges. Science of the Total Environment, 874: 162394. https://doi.org/10.1016/j.scitotenv.2023.162394
Ogutcu, H., Kantar, F., Alaylar, B., et al., 2022. Isolation and Characterization of Hydrocarbon and Petroleum Degrading Bacteria from Polluted Soil with Petroleum and Derivatives by MALDI-TOF MS Method. Geomicrobiology Journal, 39: 757-766. https://doi.org/10.1080/01490451.2022.2074575
Qu, G.Y., Li, M.J., Zheng, J.H., et al., 2022. The Promoting Effects and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science,47(2):652-661 (in Chinese with English abstract).
Rakoczy, J., Schleinitz, K.M., Müller, N., et al., 2011.Effects of Hydrogen and Acetate on Benzene Mineralisation under Sulphate-Reducing Conditions. Fems Microbiology Ecology,77(2):238-247.https://doi.org/10.1111/j.1574-6941.2011.01101.x
Semenova, E.M., Babich, T.L., Sokolova, D.S., et al.,2021.Microbial Diversity of Hydrocarbon- Contaminated Soils of the Franz Josef Land Archipelago.Microbiology,90(6):721-730.https://doi.org/10.1134/S0026261721060138
Sheng, Y. Z., Li, G. H., Dong, H. L., et al., 2021. Distinct Assembly Processes Shape Bacterial Communities along Unsaturated, Groundwater Fluctuated, and Saturated Zones. Science of the Total Environment, 761: 143303. https://doi.org/10.1016/j.scitotenv.2020.143303
Stewart, L. D., Chambon, J. C., Widdowson, M. A., et al., 2022. Upscaled Modeling of Complex DNAPL Dissolution. Journal of Contaminant Hydrology, 244: 103920. https://doi.org/10.1016/j.jconhyd.2021.103920
Sun, S., Badgley, B. D., 2019. Changes in Microbial Functional Genes within the Soil Metagenome during Forest Ecosystem Restoration. Soil Biology and Biochemistry, 135: 163-172. https://doi.org/10.1016/j.soilbio.2019.05.004
Sun, Y. J., Ding, A. Z., Zhao, X. H., et al., 2022. Response of Soil Microbial Communities to Petroleum Hydrocarbons at a Multi-Contaminated Industrial Site in Lanzhou, China. Chemosphere, 306: 135559. https://doi.org/10.1016/j.chemosphere.2022.135559
van der Zaan, B. M., Saia, F. T., Stams, A. J. M., et al., 2012. Anaerobic Benzene Degradation under Denitrifying Conditions: Peptococcaceae as Dominant Benzene Degraders and Evidence for a Syntrophic Process. Environmental Microbiology, 14(5): 1171-1181. https://doi.org/10.1111/j.1462-2920.2012.02697.x
Wang, J. L., Zhang, Y. L., Ding, Y., et al., 2023a. Comparing the Indigenous Microorganism System in Typical Petroleum-Contaminated Groundwater. Chemosphere, 311: 137173. https://doi.org/10.1016/j.chemosphere.2022.137173
Wang, Y., Bian, J. M., Sun, X. Q., et al., 2023b. Sensitivity-Dependent Dynamic Searching Approach Coupling Multi-Intelligent Surrogates in Homotopy Mechanism for Groundwater DNAPL-Source Inversion. Journal of Contaminant Hydrology, 255: 104151. https://doi.org/10.1016/j.jconhyd.2023.104151
Wang, X. S., Guan, X. Y., Zhang, X. J., et al., 2020. Microbial Communities in Petroleum-Contaminated Seasonally Frozen Soil and Their Response to Temperature Changes. Chemosphere, 258: 127375. https://doi.org/10.1016/j.chemosphere.2020.127375
Wei, Z., Wang, J. J., Gaston, L. A., et al., 2020. Remediation of Crude Oil-Contaminated Coastal Marsh Soil: Integrated Effect of Biochar, Rhamnolipid Biosurfactant and Nitrogen Application. Journal of Hazardous Materials, 396: 122595. https://doi.org/10.1016/j.jhazmat.2020.122595
Xiao, X., Zheng, Q. R., Shen, R. F., et al., 2022. Patterns of Groundwater Bacterial Communities along the Petroleum Hydrocarbon Gradient. Journal of Environmental Chemical Engineering, 10(6): 108773. https://doi.org/10.1016/j.jece.2022.108773
Xiao, Y.N., Zhong, X.L., Wang, B.C., et al., 2020.Microbial Community Structure and Function and Their Influencing Factors in the Soil of Horqin Area of Tongliao City, Inner Mongolia. Earth Science, 45(3):1071-1081 (in Chinese with English abstract).
Xiong, G.Y., Wu, J.C., Yang, Y., et al., 2022. Microbial Fields and Multi-Field Coupling in Organic Contaminated Soil-Groundwater Systems. Earth Science Frontiers, 29(3): 189-199 (in Chinese with English abstract).
Ye, X.Y., Chen, X.X., Yu, B., et al., 2022. Pollutant Distribution and Microbial Characteristics at a Petrochemical Site in the Yangtze River Economic Belt. Earth Science Frontiers,29(3): 239-247 (in Chinese with English abstract).
Zhang, P., Xie, X.J., Li, Q.H., et al., 2022. Microbial Community Structure and Its Response to Environment in Mangrove Sediments of Dongzhai Port. Earth Science, 47(3): 1122-1135 (in Chinese with English abstract).
Zhang, Q., Wang, G. C., Sugiura, N., et al., 2014. Distribution of Petroleum Hydrocarbons in Soils and the Underlying Unsaturated Subsurface at an Abandoned Petrochemical Site, North China. Hydrological Processes, 28(4): 2185-2191. https://doi.org/10.1002/hyp.9770
Zhao, F.Z., Ren, C.J., Zhang, L., et al., 2018. Changes in Soil Microbial Community are Linked to Soil Carbon Fractions After Afforestation. European Journal of Soil Science, 69(2):370-379.https://doi.org/10.1111/ejss.12525
Zhou, A. X., Zhang, Y. L., Dong, T. Z., et al., 2015. Response of the Microbial Community to Seasonal Groundwater Level Fluctuations in Petroleum Hydrocarbon-Contaminated Groundwater. Environmental Science and Pollution Research, 22(13): 10094-10106. https://doi.org/10.1007/s11356-015-4183-6
Zhu, B. L., Friedrich, S., Wang, Z., et al., 2020. Availability of Nitrite and Nitrate as Electron Acceptors Modulates Anaerobic Toluene-Degrading Communities in Aquifer Sediments. Frontiers in Microbiology, 11: 1867. https://doi.org/10.3389/fmicb.2020.01867

基金

国家重点研发计划项目(2020YFC1807101)

评论

PDF(3860 KB)

Accesses

Citation

Detail

段落导航
相关文章

/