连续河水位波动对河床潜流带硝酸盐转化效率的影响

张佩瑶, 文章, 李一鸣

PDF(6623 KB)
PDF(6623 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2637-2649. DOI: 10.3799/dqkx.2023.130

连续河水位波动对河床潜流带硝酸盐转化效率的影响

作者信息 +

Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone

Author information +
History +

摘要

为了探究连续水位波动下潜流带内硝酸盐的反应迁移规律,构建了包含河床沙丘的垂向二维数值模型.通过考虑不同河水位波动情况、河床坡度以及有氧呼吸、硝化和反硝化过程,系统探讨河床坡度和连续水位波动过程对溶质时空分布以及硝酸盐转化效率的影响.结果表明:河床坡度越大,地表水和周围地下水流之间会发生更快的物质交换,使溶质的浓度变化幅度变小,最终降低潜流带对NO3 的转化效率;较高的后续水位峰值会延长地下水潜流路径并使溶质的浓度相对变化幅度越大,然而潜流带对NO3 的转化效率会变低;后续水位波动持续的时间会影响溶质的时间响应,但不会影响对NO3 的转化效率;不同的后续水位波动延迟时间会影响NO3 浓度变化峰值出现的数量,延迟时间越久,越容易出现NO3 浓度的多峰现象.

Abstract

In order to investigate the reactive-transport patterns of nitrate in hyporheic zone during the hyporheic exchange process under a dynamic water level condition, a vertical two-dimensional numerical model of riverbed dune including (river) water fluctuations and sinuous river bed dune was constructed. By considering three types of river level fluctuations scenarios, river bed slope, aerobic respiration, nitrification and denitrification processes in our model, the effects of bed slope and water level fluctuatio scenarios on spatiotemporal evolution of solute distribution and nitrate conversion efficiency of hyporheic zone were systematically discussed. The results show that larger river bed slope condition can increase the solute exchange flux between surface water and the groundwater flow, and reduce the variation degree of solute concentration, which will consequently decrease the conversion efficiency of NO3 in hyporheic zones. Larger subsequent peak level of water fluctuations can prolong hyporheic flow path and increase the variation degree of solute concentration, whereas it can reduce the conversion efficiency of NO3 in hyporheic zones. The duration of subsequent water level fluctuations will affect the time response of solute concentration, but will not affect the conversion efficiency of NO3 . Different delay times of subsequent water level fluctuations will affect the humber of NO3 concentration peaks. Furthermore, longer delay time can result in multiple peaks of NO3 - concentration.

关键词

连续水位波动 / 河床潜流带 / 硝酸盐转化效率 / 反应迁移模拟 / 水文地质.

Key words

continuous water level fluctuations / hyporheic zone in river bed / nitrate conversion efficiency / reactive transport stimulation / hydrogeology

中图分类号

P641.2

引用本文

导出引用
张佩瑶 , 文章 , 李一鸣. 连续河水位波动对河床潜流带硝酸盐转化效率的影响. 地球科学. 2024, 49(07): 2637-2649 https://doi.org/10.3799/dqkx.2023.130
Zhang Peiyao, Wen Zhang, Li Yiming. Effect of Continuous River Water Level Fluctuations on Nitrate Conversion Efficiency in Hyporheic Zone[J]. Earth Science. 2024, 49(07): 2637-2649 https://doi.org/10.3799/dqkx.2023.130

参考文献

Bardini, L., Boano, F., Cardenas, M. B., et al., 2012. Nutrient Cycling in Bedform Induced Hyporheic Zones. Geochimica et Cosmochimica Acta, 84: 47-61. https://doi.org/10.1016/j.gca.2012.01.025
Bencala, K. E., 1983. Simulation of Solute Transport in a Mountain Pool-and-Riffle Stream with a Kinetic Mass Transfer Model for Sorption. Water Resources Research, 19(3): 732-738. https://doi.org/10.1029/WR019i003p00732
Craig, L.S., Bahr, J. M., Roden, E. E., 2010. Localized Zones of Denitrification in a Floodplain Aquifer in Southern Wisconsin, USA. Hydrogeology Journal, 18(8): 1867-1879. https://doi.org/10.1007/s10040-010-0665-2
Elliott, A. H., Brooks, N. H., 1997. Transfer of Nonsorbing Solutes to a Streambed with Bed Forms: Theory. Water Resources Research, 33(1): 123-136. https://doi.org/10.1029/96wr02784
Gomez-Velez, J. D., Wilson, J. L., Cardenas, M. B., et al., 2017. Flow and Residence Times of Dynamic River Bank Storage and Sinuosity-Driven Hyporheic Exchange. Water Resources Research, 53(10): 8572-8595. https://doi.org/10.1002/2017wr021362
Goolsby, D. A., Battaglin, W. A., Aulenbach, B. T., et al., 2000. Nitrogen Flux and Sources in the Mississippi River Basin. Science of the Total Environment, 248(2-3): 75-86. https://doi.org/10.1016/s0048-9697(99)00532-x
Grant, S. B., Azizian, M., Cook, P., et al., 2018. Factoring Stream Turbulence into Global Assessments of Nitrogen Pollution. Science, 359(6381): 1266-1269. https://doi.org/10.1126/science.aap8074
Harvey, J. W., Drummond, J. D., Martin, R. L., et al., 2012. Hydrogeomorphology of the Hyporheic Zone: Stream Solute and Fine Particle Interactions with a Dynamic Streambed. Journal of Geophysical Research: Biogeosciences, 117(G4): G00N11. https://doi.org/10.1029/2012jg002043
Howden, N. J. K., Burt, T. P., Worrall, F., et al., 2011. Nitrate Pollution in Intensively Farmed Regions: What are the Prospects for Sustaining High-Quality Groundwater? Water Resources Research, 47(6): W00L02. https://doi.org/10.1029/2011wr010843
Hunter, K. S., Wang, Y. F., Van Cappellen, P., 1998. Kinetic Modeling of Microbially-Driven Redox Chemistry of Subsurface Environments: Coupling Transport, Microbial Metabolism and Geochemistry. Journal of Hydrology, 209(1-4): 53-80. https://doi.org/10.1016/s0022-1694(98)00157-7
Käser, D. H., Binley, A., Heathwaite, A. L., et al., 2009. Spatio-Temporal Variations of Hyporheic Flow in a Riffle-Step-Pool Sequence. Hydrological Processes, 23(15): 2138-2149. https://doi.org/10.1002/hyp.7317
Kessler, A. J., Cardenas, M. B., Cook, P. L. M., 2015. The Negligible Effect of Bed Form Migration on Denitrification in Hyporheic Zones of Permeable Sediments. Journal of Geophysical Research: Biogeosciences, 120(3): 538-548. https://doi.org/10.1002/2014jg002852
Knowles, R., 1982. Denitrification. Microbiological Reviews, 46(1): 43-70. https://doi.org/10.1128/mr.46.1.43-70.1982
Li, Y., Zhang, W.W., Yuan, J.H., et al., 2016. Research Advances in Flow Patterns and Nitrogen Transformation in Hyporheic Zones. Journal of Hohai University (Natural Sciences), 44(1): 1-7 (in Chinese with English abstract).
McCallum, J. L., Shanafield, M., 2016. Residence Times of Stream-Groundwater Exchanges Due to Transient Stream Stage Fluctuations. Water Resources Research, 52(3): 2059-2073. https://doi.org/10.1002/2015wr017441
Nilsson, C., Reidy, C. A., Dynesius, M., et al., 2005. Fragmentation and Flow Regulation of the World’s Large River Systems. Science, 308(5720): 405-408. https://doi.org/10.1126/science.1107887
Qian, J., Wang, C., Wang, P.F., et al., 2009. Research Progresses in Purification Mechanism and Fitting Width of Riparian Buffer Strip. Advances in Water Science, 20(1): 139-144 (in Chinese with English abstract).
Qu, G.Y., Li, M.J., Zheng, J.H., et al., 2022. The Promoting Effect and Mechanism of Nitrogen Conversion in the Sediments of Polluted Lake on the Degradation of Organic Pollutants. Earth Science, 47(2): 652-661 (in Chinese with English abstract).
Shuai, P., Cardenas, M. B., Knappett, P. S. K., et al., 2017. Denitrification in the Banks of Fluctuating Rivers: The Effects of River Stage Amplitude, Sediment Hydraulic Conductivity and Dispersivity, and Ambient Groundwater Flow. Water Resources Research, 53(9): 7951-7967. https://doi.org/10.1002/2017wr020610
Singh, T., Gomez-Velez, J. D., Wu, L. W., et al., 2020. Effects of Successive Peak Flow Events on Hyporheic Exchange and Residence Times. Water Resources Research, 56(8): e2020WR027113. https://doi.org/10.1029/2020wr027113
Singh, T., Wu, L. W., Gomez-Velez, J. D., et al., 2019. Dynamic Hyporheic Zones: Exploring the Role of Peak Flow Events on Bedform-Induced Hyporheic Exchange. Water Resources Research, 55(1): 218-235. https://doi.org/10.1029/2018WR022993
Stonedahl, S. H., Harvey, J. W., Wörman, A., et al., 2010. A Multiscale Model for Integrating Hyporheic Exchange from Ripples to Meanders. Water Resources Research, 46(12): W12539. https://doi.org/10.1029/2009wr008865
Sun, B., Zhang, L.X., Yang, L.Z., et al., 2012. Agricultural Non-Point Source Pollution in China: Causes and Mitigation Measures. Ambio, 41(4): 370-379. https://doi.org/10.1007/s13280-012-0249-6
Trauth, N., Fleckenstein, J. H., 2017. Single Discharge Events Increase Reactive Efficiency of the Hyporheic Zone. Water Resources Research, 53(1): 779-798. https://doi.org/10.1002/2016WR019488
Triska, F. J., Kennedy, V. C., Avanzino, R. J., et al., 1989. Retention and Transport of Nutrients in a Third-Order Stream in Northwestern California: Hyporheic Processes. Ecology, 70(6): 1893-1905. https://doi.org/10.2307/1938120
Williams, D. D., Febria, C. M., Wong, J. C. Y., 2010. Ecotonal and Other Properties of the Hyporheic Zone. Fundamental and Applied Limnology, 176(4): 349-364. https://doi.org/10.1127/1863-9135/2010/0176-0349
Wörman, A., Packman, A. I., Marklund, L., et al., 2006. Exact Three-Dimensional Spectral Solution to Surface-Groundwater Interactions with Arbitrary Surface Topography. Geophysical Research Letters, 33: L0740. https://doi.org/10.1029/2006gl025747
Wu, J., Huang, S.F., Tang, H., et al., 2006. Review of Research on Ecosystem Health in Riverine Phreatic Zones. Water Resources Protection, 22(5): 5-8, 27 (in Chinese with English abstract).
Xia, J.H., Lin, J.Q., Yao, L., et al., 2010. Edge Structure and Edge Effect of Riparian Zones. Journal of Hohai University (Natural Sciences), 38(2): 215-219 (in Chinese with English abstract).
Zhao, S.F., Liu, H., Zhao, L., et al., 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489 (in Chinese with English abstract).
Zheng, L. Z., Cardenas, M.B., 2018. Diel Stream Temperature Effects on Nitrogen Cycling in Hyporheic Zones. Journal of Geophysical Research: Biogeosciences, 123(9): 2743-2760. https://doi.org/10.1029/2018jg004412

基金

国家自然科学基金面上项目(42272290)
国家自然科学基金重点项目(41830862)
国家自然科学基金项目(U23A2042)

评论

PDF(6623 KB)

Accesses

Citation

Detail

段落导航
相关文章

/