玛湖凹陷二叠系风城组深层陆相页岩储层天然裂缝及其有效性

刘国平, 金之钧, 曾联波, 何文军, 杨森, 李淑凤, 杜晓宇, 陆国青

PDF(10407 KB)
PDF(10407 KB)
地球科学 ›› 2024, Vol. 49 ›› Issue (07) : 2346-2358. DOI: 10.3799/dqkx.2023.128

玛湖凹陷二叠系风城组深层陆相页岩储层天然裂缝及其有效性

作者信息 +

Natural Fractures and Their Effectiveness in Deep Continental Shale Reservoirs of Permian Fengcheng Formation in Mahu Sag

Author information +
History +

摘要

准噶尔盆地玛湖凹陷二叠系风城组陆相页岩最大埋深超过5 000 m,油气资源丰富,其中广泛发育的天然裂缝对烃类聚集和储层勘探开发具有关键作用.通过岩心、成像测井、薄片和扫描电镜观察,建立了基于地质成因和裂缝产状的深层陆相页岩天然裂缝分类方案,阐明了不同类型天然裂缝的发育特征和有效性,并讨论了深层陆相页岩天然裂缝的非均质性及其对储层的贡献.深层陆相页岩天然裂缝依据地质成因分为构造裂缝、成岩裂缝和异常高压相关裂缝.按照裂缝产状构造裂缝细分为穿层和顺层剪切裂缝、及层内张裂缝,成岩裂缝划分为层理缝、缝合线和收缩裂缝.构造裂缝规模相对较大,组系特征明显,主要以高角度和近直立为主.成岩裂缝主要为近水平发育,缝面弯曲、易分叉.层内张裂缝、层理缝和缝合线是深层陆相页岩储层的优势裂缝类型.天然裂缝可被方解石和含有机质的细粒混合物等矿物不同程度充填,其中构造裂缝和层理缝的充填程度较低,缝合线更易被充填.微观构造裂缝的开度较小,而成岩裂缝的开度通常较大.推测认为构造裂缝主要为储层中流体渗流提供了有效通道,层理缝发育程度更高,不仅是储层流体的渗流通道,也是其有效储集空间的重要组成部分.研究成果对于完善深层陆相页岩天然裂缝分类方案及深入认识这类储层天然裂缝分布规律具有重要的借鉴意义.

Abstract

The continental shale in the Permian Fengcheng Formation of the Mahu Sag in the Junggar Basin has a maximum burial depth exceeding 5 000 m, rich in oil and gas resources. The widely developed natural fracture plays a crucial role in the accumulation and exploration of hydrocarbons in these reservoirs. A classification scheme is established for natural fractures in deep continental shale based on their geological genesis and occurrence by observing cores, image logs, thin sections, and SEM samples. Moreover, the development characteristics and effectiveness of different types of natural fractures Were analyzed, and the natural fracture heterogeneity and their contributions to reservoirs are discussed. Accordingly, natural fractures in deep continental shale are divided into tectonic, diagenetic, and abnormal high-pressure related fractures based on their geological genesis. Tectonic fractures can be subdivided into translayer shear, bed-parallel shear, and intralayer open fractures based on their occurrence, while diagenetic fractures are divided into bedding, stylolite, and shrinkage fractures. Tectonic fractures have relatively large scales, obvious groups, and high dipping and nearly vertical angles. Diagenetic fractures mainly develop horizontally, with curved surfaces and easily branched extensions. Intralayer open, bedding, and stylolite fractures are the dominant types of fractures in deep continental shale reservoirs. Natural fractures can be filled in varying degrees by minerals such as calcite and fine-grained mixtures containing organic matter, among which tectonic and bedding fractures are less filled, and stylolites are easier to be filled. Microscopic tectonic fractures have smaller apertures, while diagenetic fractures usually have larger apertures. This study speculates that tectonic fractures mainly provide effective pathways for fluid flow in reservoirs, while bedding fractures are more developed, which are not only seepage channels for reservoir fluid but also an important part of the effective storage space. The research results provide an important reference for improving the classification scheme of natural fractures in deep continental shale and for better understanding of the natural fracture distribution in such reservoirs.

关键词

天然裂缝 / 裂缝类型 / 裂缝有效性 / 深层陆相页岩 / 玛湖凹陷风城组 / 石油地质.

Key words

natural fracture / fracture type / fracture effectiveness / deep continental shale / Fengcheng Formation in Mahu Sag / petroleum geology

中图分类号

P618.13

引用本文

导出引用
刘国平 , 金之钧 , 曾联波 , . 玛湖凹陷二叠系风城组深层陆相页岩储层天然裂缝及其有效性. 地球科学. 2024, 49(07): 2346-2358 https://doi.org/10.3799/dqkx.2023.128
Liu Guoping, Jin Zhijun, Zeng Lianbo, et al. Natural Fractures and Their Effectiveness in Deep Continental Shale Reservoirs of Permian Fengcheng Formation in Mahu Sag[J]. Earth Science. 2024, 49(07): 2346-2358 https://doi.org/10.3799/dqkx.2023.128

参考文献

Aghli, G., Moussavi-Harami, R., Mohammadian, R., 2020. Reservoir Heterogeneity and Fracture Parameter Determination Using Electrical Image Logs and Petrophysical Data (a Case Study, Carbonate Asmari Formation, Zagros Basin, SW Iran). Petroleum Science, 17(1): 51-69. https://doi.org/10.1007/s12182-019-00413-0
Baud, P., Rolland, A., Heap, M., et al., 2016. Impact of Stylolites on the Mechanical Strength of Limestone. Tectonophysics, 690: 4-20. https://doi.org/10.1016/j.tecto.2016.03.004
Cao, Z., Liu, G. D., Kong, Y. H., et al., 2016. Lacustrine Tight Oil Accumulation Characteristics: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. International Journal of Coal Geology, 153: 37-51. https://doi.org/10.1016/j.coal.2015.11.004
Ding, W.L., Xu, C.C., Jiu, K., et al., 2011. The Research Progress of Shale Fractures. Advances in Earth Science, 26(2): 135-144 (in Chinese with English abstract).
Gale, J. F. W., Lander, R. H., Reed, R. M., et al., 2010. Modeling Fracture Porosity Evolution in Dolostone. Journal of Structural Geology, 32(9): 1201-1211. https://doi.org/10.1016/j.jsg.2009.04.018
Gale, J. F. W., Laubach, S. E., Olson, J. E., et al., 2014. Natural Fractures in Shale: A Review and New Observations. AAPG Bulletin, 98(11): 2165-2216. https://doi.org/10.1306/08121413151
Gong, L., Zeng, L.B., Du, Y.J., et al., 2015. Influences of Structural Diagenesis on Fracture Effectiveness: A Case Study of the Cretaceous Tight Sandstone Reservoirs of Kuqa Foreland Basin. Journal of China University of Mining & Technology, 44(3): 514-519 (in Chinese with English abstract).
He, W.J., Qian, Y.X., Zhao, Y., et al., 2021. Exploration Implications of Total Petroleum System in Fengcheng Formation, Mahu Sag, Junggar Basin. Xinjiang Petroleum Geology, 42(6): 641-655 (in Chinese with English abstract).
Huang, Y.Y., Wang, G.W., Song, L.T., et al., 2022. Fracture Logging Identification and Effectiveness Analysis of Shale Reservoir of the Permian Fengcheng Formation in Mahu Sag, Junggar Basin. Journal of Palaeogeography (Chinese Edition), 24(3): 540-555 (in Chinese with English abstract).
Jin, J., Yang, Z.,Yilihamu, E., et al., 2018. Nanopore Characteristics and Oil-Bearing Properties of Tight Oil Reservoirs in Jimsar Sag, Junggar Basin. Earth Science, 43(5): 1594-1601 (in Chinese with English abstract).
Jin, Z.J., Bai, Z.R., Gao, B., et al., 2019. Has China Ushered in the Shale Oil and Gas Revolution? Oil & Gas Geology, 40(3): 451-458 (in Chinese with English abstract).
Jin, Z.J., Liang, X.P., Wang, X.J., et al., 2022. Shale Oil Enrichment Mechanism and Sweet Spot Selection of Fengcheng Formation in Mahu Sag, Junggar Basin. Xinjiang Petroleum Geology, 43(6): 631-639 (in Chinese with English abstract).
Jin, Z.J., Zhu, R.K., Liang, X.P., et al., 2021. Several Issues Worthy of Attention in Current Lacustrine Shale Oil Exploration and Development. Petroleum Exploration and Development, 48(6): 1276-1287 (in Chinese with English abstract).
Ju, W., You, Y., Feng, S.B., et al., 2020. Characteristics and Genesis of Bedding-Parallel Fractures in Tight Sandstone Reservoirs of Chang 7 Oil Layer, Ordos Basin. Oil & Gas Geology, 41(3): 596-605 (in Chinese with English abstract).
Kuang, L.C., Tang, Y., Lei, D.W., et al., 2012. Formation Conditions and Exploration Potential of Tight Oil in the Permian Saline Lacustrine Dolomitic Rock, Junggar Basin, NW China. Petroleum Exploration and Development, 39(6): 657-667 (in Chinese with English abstract).
Kuang, L.C., Zhi, D.M., Wang, X.J., et al., 2021. Oil and Gas Accumulation Assemblages in Deep to Ultra-Deep Formations and Exploration Targets of Petroliferous Basins in Xinjiang Region. China Petroleum Exploration, 26(4): 1-16 (in Chinese with English abstract).
Laubach, S. E., Reed, R. M., Olson, J. E., et al., 2004. Coevolution of Crack-Seal Texture and Fracture Porosity in Sedimentary Rocks: Cathodoluminescence Observations of Regional Fractures. Journal of Structural Geology, 26(5): 967-982. https://doi.org/10.1016/j.jsg.2003.08.019
Lei, H.Y., Guo, P., Meng, Y., et al., 2022. Pore Structure and Classification Evaluation of Shale Oil Reservoirs of Permian Fengcheng Formation in Mahu Sag. Lithologic Reservoirs, 34(3): 142-153 (in Chinese with English abstract).
Li, M.W., Jin, Z.J., Dong, M.Z., et al., 2020. Advances in the Basic Study of Lacustrine Shale Evolution and Shale Oil Accumulation. Petroleum Geology & Experiment, 42(4): 489-505 (in Chinese with English abstract).
Li, Y.L., Lu, S.L., Xia, D.L., et al., 2022. Development Characteristics and Main Controlling Factors of Natural Fractures in Shale Series of the Seventh Member of the Yanchang Formation, Southern Ordos Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 57(1): 73-87 (in Chinese with English abstract).
Liu, G. P., Jin, Z. J., Zeng, L. B., et al., 2023. Natural Fractures in Deep Continental Shale Oil Reservoirs: A Case Study from the Permian Lucaogou Formation in the Eastern Junggar Basin, Northwest China. Journal of Structural Geology, 174(1): 104913. https://doi.org/10.1016/j.jsg.2023.104913
Liu, G. P., Zeng, L. B., Wang, X. J., et al., 2020. Natural Fractures in Deep Tight Gas Sandstone Reservoirs in the Thrust Belt of the Southern Junggar Basin, Northwestern China. Interpretation, 8(4): SP81-SP93. https://doi.org/10.1190/int-2020-0051.1
Liu, G. P., Zeng, L. B., Zhu, R. K., et al., 2021. Effective Fractures and Their Contribution to the Reservoirs in Deep Tight Sandstones in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 124: 104824. https://doi.org/10.1016/j.marpetgeo.2020.104824
Liu, J.S., Ding, W.L., Yang, H.M., et al., 2023. Natural Fractures and Rock Mechanical Stratigraphy Evaluation in Huaqing Area, Ordos Basin: A Quantitative Analysis Based on Numerical Simulation. Earth Science, 48(7): 2572-2588 (in Chinese with English abstract).
Tian, H., Zeng, L.B., Xu, X., et al., 2020. Characteristics of Natural Fractures in Marine Shale in Fuling Area, Sichuan Basin, and Their Influence on Shale Gas. Oil & Gas Geology, 41(3): 474-483 (in Chinese with English abstract).
Toussaint, R., Aharonov, E., Koehn, D., et al., 2018. Stylolites: A Review. Journal of Structural Geology, 114: 163-195. https://doi.org/10.1016/j.jsg.2018.05.003
Wang, J., Zhou, L., Liu, J., et al., 2022. Genetic Mechanism of the Huxiang Hydrothermal Dolomite: A Case Study of the Permian Fengcheng Formation in the Mahu Sag, Junggar Basin. Acta Sedimentologica Sinica, 42(1): 1-16 (in Chinese with English abstract).
Wang, X. J., Cui, B. W., Feng, Z. H., et al., 2023. In- Situ Hydrocarbon Formation and Accumulation Mechanisms of Micro- and Nano-Scale Pore-Fracture in Gulong Shale, Songliao Basin, NE China. Petroleum Exploration and Development, 50(6): 1269-1281. https://doi.org/10.1016/s1876-3804(24)60465-9
Wu, S.T., Zhu, R.K., Cui, J.G., et al., 2015. Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China. Petroleum Exploration and Development, 42(2): 167-176 (in Chinese with English abstract).
Yang, Z., Zou, C.N., Wu, S.T., et al., 2019. Formation, Distribution and Resource Potential of the “Sweet Areas (Sections)” of Continental Shale Oil in China. Marine and Petroleum Geology, 102: 48-60. https://doi.org/10.1016/j.marpetgeo.2018.11.049
Zeng, L. B., Lyu, W. Y., Li, J., et al., 2016. Natural Fractures and Their Influence on Shale Gas Enrichment in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 1-9. https://doi.org/10.1016/j.jngse.2015.11.048
Zeng, L. B., Gong, L., Zu, K.W., et al., 2012. Influence Factors on Fracture Validity of the Paleogene Reservoir, Western Qaidam Basin. Acta Geologica Sinica, 86(11): 1809-1814 (in Chinese with English abstract).
Zeng, L.B., Ma, S.J., Tian, H., et al., 2023. Research Progress of Natural Fractures in Organic Rich Shale. Earth Science, 48(7): 2427-2442 (in Chinese with English abstract).
Zeng, L. B., Tang, X. M., Wang, T. C., et al., 2012. The Influence of Fracture Cements in Tight Paleogene Saline Lacustrine Carbonate Reservoirs, Western Qaidam Basin, Northwest China. AAPG Bulletin, 96(11): 2003-2017. https://doi.org/10.1306/04181211090
Zhang, Y.Z., Zeng, L.B., Luo, Q., et al., 2018. Research on the Types and Genetic Mechanisms of Tight Reservoir in the Lucaogou Formation in Jimusar Sag, Junggar Basin. Natural Gas Geoscience, 29(2): 211-225 (in Chinese with English abstract).
Zhang, Y. Z., Zeng, L. B., Luo, Q., et al., 2020. Effects of Diagenesis on Natural Fractures in Tight Oil Reservoirs: A Case Study of the Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, NW China. Geological Journal, 55(9): 6562-6579. https://doi.org/10.1002/gj.3822
Zhang, Z. C., Liu, K. Q., Wang, Z. L., et al., 2024. Detailed Characterization of Pore Results of Continental Shale Reservoir in Fengcheng Formation, Mahu Sag. ACS Omega, 9(21): 22923-22940. https://doi.org/10.1021/acsomega.4c02056
Zhao, W.Z., Hu, S.Y., Hou, L.H., et al., 2020. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10 (in Chinese with English abstract).
Zhi, D.M., Tang, Y., He, W.J., et al., 2021. Orderly Coexistence and Accumulation Models of Conventional and Unconventional Hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin. Petroleum Exploration and Development, 48(1): 38-51 (in Chinese with English abstract).
Zhi, D.M., Tang, Y., Zheng, M.L., et al., 2019. Geological Characteristics and Accumulation Controlling Factors of Shale Reservoirs in Fengcheng Formation, Mahu Sag, Junggar Basin. China Petroleum Exploration, 24(5): 615-623 (in Chinese with English abstract).
Zhou, T., Wang, H.B., Li, F.X., et al., 2020. Numerical Simulation of Hydraulic Fracture Propagation in Laminated Shale Reservoirs. Petroleum Exploration and Development, 47(5): 1039-1051 (in Chinese with English abstract).
Zolitschka, B., Francus, P., Ojala, A. E. K., et al., 2015. Varves in Lake Sediments: A Review. Quaternary Science Reviews, 117: 1-41. https://doi.org/10.1016/j.quascirev.2015.03.019
Zou, C.N., Yang, Z., Wang, H.Y., et al., 2019. “Exploring Petroleum Inside Source Kitchen”: Jurassic Unconventional Continental Giant Shale Oil & Gas Field in Sichuan Basin, China. Acta Geologica Sinica, 93(7): 1551-1562 (in Chinese with English abstract).
Zou, Y. S., Zhang, S. C., Zhou, T., et al., 2016. Experimental Investigation into Hydraulic Fracture Network Propagation in Gas Shales Using CT Scanning Technology. Rock Mechanics and Rock Engineering, 49(1): 33-45. https://doi.org/10.1007/s00603-015-0720-3

基金

国家自然科学基金项目(42090025;42302148)
中国石油科技创新基金项目(2023DQ02-0103)
页岩油气富集机理与有效开发国家重点实验室开放基金项目(33550000-22-ZC0613-0336)

评论

PDF(10407 KB)

Accesses

Citation

Detail

段落导航
相关文章

/