
均匀滑移模型在海啸预警中的应用——以2021年M w 8.2 Alaska地震为例
朱艺帆, 安超
均匀滑移模型在海啸预警中的应用——以2021年M w 8.2 Alaska地震为例
Application of Uniform Slip Models to Tsunami Early Warning: A Case Study of 2021 M w 8.2 Alaska Peninsula Earthquake
为了保证海啸预警的时效性,复杂的地震震源经常被简化为均匀滑移模型来预测海啸波. 虽然均匀滑移模型已经被广泛使用,但其在实际事件中预测海啸波的准确性并未得到全面的评估和认可.对2021年M w 8.2 Alaska地震构建了有限断层模型(finite-fault model)和多种均匀滑移模型,并对海啸波的预测误差进行对比分析.有限断层模型显示,2021年Alaska地震的同震滑移分布在15~40 km的深度范围内,震源周围的最大滑移约为6 m. 另外,通过全局搜索得到的最优均匀滑移模型对海啸波的预测与有限断层模型非常接近,都与观测波形符合良好;两种位于gCMT中心、但采用不同标度关系(scalingrelation)的均匀滑移模型给出了几乎一致的远场波形.对此次地震海啸的研究结果表明,均匀滑移模型对海啸波的最佳预测能力与有限断层模型相当,根据gCMT中心和标度关系构造的均匀滑移模型对远场海啸预警比较可靠,且不同标度关系对远场波形预测无显著影响.
To issue tsunami warnings in real-time, complex earthquake sources are usually simplified to uniform slip models for tsunami prediction. Althought this approach of simplification is widely used, its accuracy in predicting tsunami waves in actual events hasnot been fully evaluated and recognized. In this paper, a finite-fault model and various uniform slip models are constructed for the 2021 M w 8.2 Alaska Peninsula earthquake, and their prediction errors for tsunami waves are compared. The finite-fault model inverted from tsunami datareveals that the coseismic slip of this event was distributed over a depth range of 15 to 40 km, and the ~6m maximum slip occurred near the hypocenter. Besides, the optimum uniform slip model obtained from global search provides very similar tsunami predictions to those given by the finite-fault model, both of which agree well with the observations. Two uniform slip models located at the gCMT centroid but using different scaling relations yield almost the same far-field waveforms.Results of this study show that the optimum predicting ability of uniform slip modelis almost equivalent to that of the finite-fault model. The uniform slip models based on gCMT centroids and scaling relations are relatively reliable for far-field tsunami warning, and difference in scaling relations may not significantly impact the far-field predictions.
海啸预警 / 均匀滑移模型 / 海啸反演 / 2021年Alaska地震 / 天然地震
tsunami warning / uniform slip model / tsunami inversion / 2021 Alaska Peninsula earthquake / earthquake
P738
An, C., Liu, H., Ren, Z. Y., et al., 2018. Prediction of Tsunami Waves by Uniform Slip Models. Journal of Geophysical Research: Oceans, 123(11): 8366-8382. https://doi.org/10.1029/2018jc014363
|
An, C., Sepúlveda, I., Liu, P. L. F., et al., 2014. Tsunami Source and its Validation of the 2014 Iquique, Chile, Earthquake. Geophysical Research Letters, 41(11): 3988-3994. https://doi.org/10.1002/2014gl060567
|
Bernard, E., Titov, V., 2015. Evolution of Tsunami Warning Systems and Products. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,373(2053): 20140371. https://doi.org/10.1098/rsta.2014.0371
|
Blaser, L., Kruger, F., Ohrnberger, M., et al., 2010. Scaling Relations of Earthquake Source Parameter Estimates with Special Focus on Subduction Environment. Bulletin of the Seismological Society of America, 100(6): 2914-2926. https://doi.org/10.1785/0120100111
|
Elliott, J. L., Grapenthin, R., Parameswaran, R. M., et al., 2022. Cascading Rupture of a Megathrust. Science Advances, 8(18): eabm4131. https://doi.org/10.1126/sciadv.abm4131
|
Fujii, Y., Satake, K., Sakai, S., et al., 2011. Tsunami Source of the 2011 off the Pacific Coast of Tohoku Earthquake. Earth, Planets and Space, 63(7): 815-820. https://doi.org/10.5047/eps.2011.06.010
|
Geist, E. L., 2002. Complex Earthquake Rupture and Local Tsunamis. Journal of Geophysical Research: Solid Earth,107(B5): ESE2-1-ESE2-15. https://doi.org/10.1029/2000JB000139
|
Gonzalez, F. I., Milburn, H. M., Bernard, E. N., et al., 1998. Deep-Ocean Assessment and Reporting of Tsunamis (Dart): Brief Overview and Status Report. Proceedings of the international workshop on Tsunami Disaster Mitigation,
|
Greenslade, D. J. M., Allen, S. C. R., Simanjuntak, M. A., 2011. An Evaluation of Tsunami Forecasts from the T2 Scenario Database. Pure and Applied Geophysics, 168(6/7): 1137-1151. https://doi.org/10.1007/s00024-010-0229-3
|
Greenslade, D. J. M., Titov, V. V., 2008. A Comparison Study of Two Numerical Tsunami Forecasting Systems. Pure and Applied Geophysics, 165(11/12): 1991-2001. https://doi.org/10.1007/s00024-008-0413-x
|
Hayes, G. P., Moore, G. L., Portner, D. E.,et al., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science, 362(6410): 58-61. https://doi.org/10.1126/science.aat4723
|
Kamigaichi, O., 2022. Tsunami Forecasting and Warning. Complexity in Tsunamis, Volcanoes, and Their Hazards, 335-371.
|
Lawson, C. L., Hanson, R. J., 1995. Solving Least Squares Problems (Vol. 161). SIAM, Englewood Cliffs, N. J. https://doi.org/10.1137/1.9781611971217
|
Li, L. L., Qiu, Q., Li, Z. G., et al., 2022. Tsunami Hazard Assessment in the South China Sea: A Review of Recent Progress and Research Gaps. Science China Earth Sciences, 65(5): 783-809. https://doi.org/10.1007/s11430-021-9893-8
|
Li, L., Qiu, Q., Li, Z., et al., 2022. Tsunami Hazard Assessment in the South China Sea: A Review of Recent Progress and Research Gaps. Science China Earth Sciences, 52(5): 803-831 (in Chinese with English abstract).
|
Liu, C. L., Lay, T., Xiong, X., 2022. The 29 July 2021 M W 8.2 Chignik, Alaska Peninsula Earthquake Rupture Inferred from Seismic and Geodetic Observations: Re‐Rupture of the Western 2/3 of the 1938 Rupture Zone. Geophysical Research Letters, 49(4): e2021GL096004. https://doi.org/10.1029/2021gl096004
|
Liu, P. L.F., Woo, S.B., Cho, Y.S., 1998. Computer Programs for Tsunami Propagation and Inundation (Technical Report). Cornell University, Ithaca, N.Y.
|
Mai, P. M., Beroza, G. C.,2000. Source Scaling Properties from Finite-Fault-Rupture Models. Bulletin of the Seismological Society of America, 90(3): 604-615. https://doi.org/10.1785/0119990126
|
Melgar, D., Williamson, A. L., Salazar-Monroy, E. F., 2019. Differences between Heterogenous and Homogenous Slip in Regional Tsunami Hazards Modelling. Geophysical Journal International,219(1): 553-562. https://doi.org/10.1093/gji/ggz299
|
Mueller, C., Power, W., Fraser, S., et al., 2015. Effects of Rupture Complexity on Local Tsunami Inundation: Implications for Probabilistic Tsunami Hazard Assessment by Example. Journal of Geophysical Research: Solid Earth, 120(1): 488-502. https://doi.org/10.1002/2014jb011301
|
Mulia, I. E., Gusman, A. R., Heidarzadeh, M., et al., 2022. Sensitivity of Tsunami Data to the Up-Dip Extent of the July 2021 Mw 8.2 Alaska Earthquake. Seismological Research Letters, 93(4): 1992-2003. https://doi.org/10.1785/0220210359
|
Murotani, S., Miyake, H., Koketsu, K., 2008. Scaling of Characterized Slip Models for Plate-Boundary Earthquakes. Earth, Planets and Space, 60(9): 987-991. https://doi.org/10.1186/bf03352855
|
Okada, Y., 1985. Surface Deformation Due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 75(4): 1135-1154. https://doi.org/10.1785/bssa0750041135
|
Ren, J., Sun, M., Bing, H., 2021. A Giant Submarine Landslide and Its Triggering Mechanisms on the Nansha Trough Margin, South China Sea. Earth Science, 46(3): 1058-1071 (in Chinese with English Abstract).
|
Rudloff, A., Lauterjung, J., Münch, U., et al., 2009. Preface: The GITEWS Project (German-Indonesian Tsunami Early Warning System). Natural Hazards and Earth System Sciences, 9(4): 1381-1382. https://doi.org/10.5194/nhess-9-1381-2009
|
Setiyono, U., Gusman, A. R., Satake, K., et al., 2017. Pre-Computed Tsunami Inundation Database and Forecast Simulation in Pelabuhan Ratu, Indonesia. Pure and Applied Geophysics, 174(8): 3219-3235. https://doi.org/10.1007/s00024-017-1633-8
|
Tanioka, Y., Satake, K., 1996. Tsunami Generation by Horizontal Displacement of Ocean Bottom. Geophysical Research Letters, 23(8): 861-864. https://doi.org/10.1029/96gl00736
|
Wang, X. M., Liu, P. L. F., 2006. An Analysis of 2004 Sumatra Earthquake Fault Plane Mechanisms and Indian Ocean Tsunami. Journal of Hydraulic Research, 44(2): 147-154. https://doi.org/10.1080/00221686. 2006. 9521671
|
Wang, Y. C., Su, H. Y., Ren, Z. Y., et al., 2022. Source Properties and Resonance Characteristics of the Tsunami Generated by the 2021 M 8.2 Alaska Earthquake. Journal of Geophysical Research: Oceans, 127(3): e2021JC018308. https://doi.org/10.1029/2021jc018308
|
Wei, Y., Cheung, K. F., Curtis, G. D., et al., 2003. Inverse Algorithm for Tsunami Forecasts. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(2): 60-69. https://doi.org/10.1061/(asce)0733-950x(2003)129:2(60)
|
Wells, D. L., Coppersmith, K. J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 84(4): 974-1002. https://doi.org/10.1785/bssa0840040974
|
Ye, L. L., Bai, Y. F., Si, D. J., et al., 2022. Rupture Model for the 29 July 2021 MW 8.2 Chignik, Alaska Earthquake Constrained by Seismic, Geodetic, and Tsunami Observations. Journal of Geophysical Research: Solid Earth, 127(7): e2021JB023676. https://doi.org/10.1029/2021jb023676
|
Yue, H., Lay, T., Rivera, L., et al., et al., 2014. Localized Fault Slip to the Trench in the 2010 Maule, Chile Mw = 8.8 Earthquake from Joint Inversion of High-Rate Gps, Teleseismic Body Waves, Insar, Campaign Gps, and Tsunami Observations. Journal of Geophysical Research: Solid Earth, 119(10): 7786-7804. https://doi.org/10.1002/2014JB011340
|
Zhu, Y., An, C., Wang, T., et al., 2021. Time-Dependent Tsunami Source Following the 2018 Anak Krakatau Volcano Eruption Inferred from Nearby Tsunami Recordings. China Ocean Engineering, 35(1): 145-152. https://doi.org/10.1007/s13344-021-0013-4
|
任金锋, 孙鸣, 韩冰, 2021. 南海南沙海槽大型海底滑坡的发育特征及成因机制. 地球科学, 46(3):1058-1071.
|
李琳琳, 邱强, 李志刚, 等, 2022. 南海海啸灾害研究进展及展望. 中国科学: 地球科学, 52(5):803-831.
|
/
〈 |
|
〉 |